版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省金湖县数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知点在抛物线上,则点关于抛物线对称轴的对称点坐标为()A. B. C. D.2.用配方法解方程,下列配方正确的是()A. B.C. D.3.在同一坐标系中,一次函数与二次函数的图象可能是().A. B. C. D.4.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.5.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<26.某班同学要测量学校升国旗的旗杆的高度,在同一时刻,量得某一同学的身高是1.6m,影长为1m,旗杆的影长为7.5m,则旗杆的高度是()A.9m B.10m C.11m D.12m7.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A. B. C. D.8.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.79.运动会的领奖台可以近似的看成如图所示的立体图形,则它的左视图是()A. B.C. D.10.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为A. B. C. D.二、填空题(每小题3分,共24分)11.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.12.两个相似三角形的面积比为4:9,那么它们对应中线的比为______.13.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.14.方程x2﹣2x+1=0的根是_____.15.不等式组的解集为__________.16.如果向量a、b、x满足关系式2a﹣(x﹣3b)=4b,那么x=_____(用向量a、b表示).17.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为_____.18.在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值=_____.三、解答题(共66分)19.(10分)2018年12月1日,贵阳地铁一号线正式开通,标志着贵阳中心城区正式步入地铁时代,为市民的出行带来了便捷,如图是贵阳地铁一号线路图(部分),菁菁与琪琪随机从这几个站购票出发.(1)菁菁正好选择沙冲路站出发的概率为(2)用列表或画树状图的方法,求菁菁与琪琪出发的站恰好相邻的概率.20.(6分)已知:如图,在四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,AE⊥BD,垂足为E.(1)求证:△ABE∽△DBC;(2)若AD=25,BC=32,求线段AE的长.21.(6分)在平面直角坐标系xOy中,抛物线交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.22.(8分)如图,在直角坐标系中,以点为圆心,以3为半径的圆,分别交轴正半轴于点,交轴正半轴于点,过点的直线交轴负半轴于点.(1)求两点的坐标;(2)求证:直线是⊙的切线.23.(8分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?24.(8分)女本柔弱,为母则刚,说的是母亲对子女无私的爱,母爱伟大,值此母亲节来临之际,某花店推出一款康乃馨花束,经过近几年的市场调研发现,该花束在母亲节的销售量(束)与销售单价(元)之间满足如图所示的一次函数关系,已知该花束的成本是每束100元.(1)求出关于的函数关系式(不要求写的取值范围);(2)设该花束在母亲节盈利为元,写出关于的函数关系式:并求出当售价定为多少元时,利润最大?最大值是多少?(3)花店开拓新的进货渠道,以降低成本.预计在今后的销售中,母亲节期间该花束的销售量与销售单价仍存在(1)中的关系.若想实现销售单价为200元,且销售利润不低于9900元的销售目标,该花束每束的成本应不超过多少元.25.(10分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.26.(10分)如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)连接DF,求DF的长度;(2)求▱DEFG周长的最小值;(3)当▱DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:QG的值.
参考答案一、选择题(每小题3分,共30分)1、A【分析】先将点A代入抛物线的解析式中整理出一个关于a,b的等式,然后利用平方的非负性求出a,b的值,进而可求点A的坐标,然后求出抛物线的对称轴即可得出答案.【详解】∵点在抛物线上,∴,整理得,,解得,,.抛物线的对称轴为,∴点关于抛物线对称轴的对称点坐标为.故选:A.【点睛】本题主要考查完全平方公式的应用、平方的非负性和二次函数的性质,掌握二次函数的性质是解题的关键.2、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、D【解析】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.一次函数的图象.4、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.5、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6、D【分析】因为在同一时刻同一地点任何物体的高与其影子长比值是相同的,所以同学的身高与其影子长的比值等于旗杆的高与其影子长的比值.【详解】设旗杆的高度为x,根据在同一时刻同一地点任何物体的高与其影子长比值是相同的,得:=,解得:x=1.6×7.5=12(m),∴旗杆的高度是12m.故选:D.【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题的关键.7、C【解析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.8、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.9、D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:由左视图的定义知该领奖台的左视图如下:故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.10、D【分析】如果过O作OC⊥AB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB弧于C,
根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,
直角三角形OAD中,OA=4,OD=2,
∴AD=∴AB=2AD=,故选:D.【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.二、填空题(每小题3分,共24分)11、-1【解析】每次变化时,开口方向变化但形状不变,则a=1,故开口向上时a=1,开口向下时a=-1;与x轴的交点在变化,可发现规律抛物线Cn与x轴交点的规律是(2n-2,0)和(2n,0),由两点式y=a(x-x1)(x-x2)【详解】由抛物线C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),则抛物线C2:y=(x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),则抛物线C3:y=-(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),则抛物线C4:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y=1×(-1)-1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式.12、2:1.【分析】根据相似三角形的面积的比等于相似比的平方进行计算即可;【详解】解:∵两个相似三角形的面积比为4:9,∴它们对应中线的比.故答案为:2:1.【点睛】本题主要考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.13、【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl(其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴故答案为:.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.14、x1=x2=1【解析】方程左边利用完全平方公式变形,开方即可求出解.【详解】解:方程变形得:(x﹣1)2=0,解得:x1=x2=1.故答案是:x1=x2=1.【点睛】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.15、【解析】首先分别解出两个不等式的解集,再确定不等式组的解集.【详解】解答:,
由①得:,
由②得:,
∴不等式组的解集为,故答案为:【点睛】此题主要考查了解一元一次不等式组,关键是解不等式.16、2a﹣b【解析】根据平面向量的加减法计算法则和方程解题.【详解】2a2ax=2故答案是2a【点睛】本题主要考查平面向量,此题是利用方程思想求得向量的值的,难度不大.17、x2﹣3x+2=1.【分析】按照去括号、移项、合并同类项的步骤化为ax2+bx+c=1的形式即可.【详解】x2+x=4x﹣4+2,x2﹣3x+2=1.故答案为:x2﹣3x+2=1.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=1(a≠1).其中a是二次项系数,b是一次项系数,c是常数项.18、3【解析】作AD⊥BC于D点,根据等腰三角形的性质得到BD=12BC【详解】解:如图,作AD⊥BC于D点,∵AB=AC=4,BC=6,∴BD=12BC在Rt△ABD中,cosB=BDAB=3故答案为34【点睛】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比.也考查了等腰三角形的性质.三、解答题(共66分)19、(1);(2)【分析】(1)根据概率公式,即可求解;(2)记火车站为A,沙冲路为B,望城坡为C,新村为D,然后采用列表法列出所有可能的情况,找出满足条件的情况,即可得出其概率.【详解】(1)P(选择沙冲路站出发)=;(2)记火车站为A,沙冲路为B,望城坡为C,新村为D列表如下:由图可知共有16种等可能情况,满足条件的情况是6种P(菁菁与琪琪出发的站恰好相邻)=【点睛】此题主要考查概率的求解,熟练掌握,即可解题.20、(1)证明见解析;(2)1【分析】(1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又因为∠AEB=∠C=90°,所以可证△ABE∽△DBC;
(2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE即可.【详解】(1)证明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得,
∵AB=AD=25,BC=32,
∴,
∴BE=20,
∴AE==1.【点睛】此题考查相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质及勾股定理解题.21、(1)顶点D(m,1-m);(1)向左平移了1个单位,向上平移了1个单位;(3)m=-1或m=-1.【解析】试题分析:把抛物线的方程配成顶点式,即可求得顶点坐标.把点代入求出抛物线方程,根据平移规律,即可求解.分两种情况进行讨论.试题解析:(1)∵,∴顶点D(m,1-m).(1)∵抛物线过点(1,-1),∴.即,∴或(舍去),∴抛物线的顶点是(1,-1).∵抛物线的顶点是(1,1),∴向左平移了1个单位,向上平移了1个单位.(3)∵顶点D在第二象限,∴.情况1,点A在轴的正半轴上,如图(1).作于点G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍).情况1,点A在轴的负半轴上,如图(1).作于点G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍),或22、(1),;(2)详见解析.【分析】(1)先根据圆的半径可求出CA的长,再结合点C坐标即可得出点A坐标;根据点C坐标可知OC的长,又根据圆的半径可求出CB的长,然后利用勾股定理可求出OB的长,即可得出点B坐标;(2)先根据点坐标分别求出,再根据勾股定理的逆定理可得是直角三角形,然后根据圆的切线的判定定理即可得证.【详解】(1)∵,圆的半径为3∴,∴点A是x轴正半轴与圆的交点∴如图,连接CB,则在中,点B是y轴正半轴与圆的交点∴;(2)∵∴在中,则在中,是直角三角形,即又∵BC是⊙C半径∴直线BD是⊙C的切线.【点睛】本题是一道较简单的综合题,考查了圆的基本性质、勾股定理、圆的切线的判定定理等知识点,熟记各定理与性质是解题关键.23、(1)(,x为整数),(,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,分段讨论函数的最值,进行比较即可得出最大利润及月份.【详解】解:(1)当时,;当时,设,将(4,140),(12,220)代入得,解得∴∴y与x的函数关系式为:(,x为整数),(,x为整数)(2)设生猪饲养场月利润为W,当(x为整数)时,,因为,W随x的增大而减小,所以当x取最小值1时,万元当(x为整数)时,,因为,所以当时,万元;综上所述,该饲养场一月份的利润最大,最大利润是203万元【点睛】本题考查了待定系数法求一次函数解析式,以及一次函数和二次函数的最值问题,熟练掌握待定系数法和二次函数的最值求法是解题的关键.24、(1);(2),240,9800;(3)1.【分析】(1)根据题目中所给的图象,确定一次函数图象经过点,,再利用待定系数法求出关于的函数关系式即可;(2)根据“总利润=单件的利润×销售量”列出W与x的二次函数关系式,再利用二次函数的性质求解即可;(3)根据题意可以列出相应的不等式,从而可以解得该花束每束的成本.【详解】解:(1)设一次函数关系式为,由题图知该函数图象过点,,则,解得,∴关于的函数关系式为(2)由题知,∴当时,有最大值,最大值为9800元;(3)设该花束每束的成本为元,由题意知,解得.答:该花束每束的成本应不超过1元.【点睛】本题考查二次函数的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.25、两人之中至少有一人直行的概率为.【解析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.26、(1);(2)6;(3)或.【分析】(1)平行四边形DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)平行四边形DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)平行四边形DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.【详解】解:(1)如图1所示:∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度文化艺术vi设计制作合同
- 二零二五年度按揭贷款服务与资产评估合同3篇
- 二零二五年度投标保函担保合同范本
- 二零二五年度房屋买卖及贷款担保协议3篇
- 海南职业技术学院《现代信息网络技术》2023-2024学年第一学期期末试卷
- 海南医学院《电子商务理论与实务》2023-2024学年第一学期期末试卷
- 二零二五年度水利设施安装与维护合同3篇
- 2025版防盗门个性化定制加工承揽协议范本3篇
- 二零二五年度智能家居控制系统开发委托服务合同3篇
- 某房地产公司安全管理应急预案范文(2篇)
- 建筑劳务合作协议书范本.文档
- 基于Internet的银行竞争情报收集系统的研究与实现的中期报告
- 医院对账平台技术方案
- 住院医师规范化培训年度眼科学习总结
- 医疗事故处理条例【精美医学课件】
- 2024年首都机场集团公司招聘笔试参考题库含答案解析
- 自动化电气控制方案
- 加油站涉恐风险评估报告
- 2 汽车维修档案管理制度范文精简处理
- 工贸企业重大事故隐患判定标准培训PPT
- 2023年外交学院招考聘用笔试题库含答案解析
评论
0/150
提交评论