版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省江都区黄思中学苏科版九年级数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形中,可以看作是中心对称图形的为()A. B. C. D.2.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数的图象上有且只有一个完美点,且当时,函数的最小值为﹣3,最大值为1,则m的取值范围是()A. B. C. D.3.半径为R的圆内接正六边形的面积是()A.R2 B.R2 C.R2 D.R24.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.125.将二次函数y=x2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣36.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有()A.①②③ B.②④⑥ C.②⑤⑥ D.②③⑤7.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变8.如图,二次函数y=ax1+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④当y<0时,x<﹣1或x>1.其中正确的有()A.4个 B.3个 C.1个 D.1个9.将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于()A.-3 B.1 C.4 D.710.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同11.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.912.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.二、填空题(每题4分,共24分)13.从一副扑克牌中的13张黑桃牌中随机抽取一张,它是王牌的概率为____.14.如图,是的边上一点,且点的横坐标为3,,则______.15.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.16.两地的实际距离是,在地图上众得这两地的距离为,则这幅地图的比例尺是___________.17.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.18.若,则的值为__________.三、解答题(共78分)19.(8分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.20.(8分)如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积21.(8分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设,(其中表示△BCE的面积,表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当时,请直接写出线段AE的长.22.(10分)如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.23.(10分)周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,她记录了15天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如下表所示:(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画P随x的变化规律,请直接写出P与x的函数关系式及自变量x的取值范围;(3)求出销售额W在哪一天达到最大,最大销售额是多少元?24.(10分)如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.25.(12分)如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,,求的半径长;(3)①求证:;②若的面积为,,求的长.26.如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).(1)当圆心在内部,∠ABO+∠ADO=70°时,求∠BOD的度数;(2)当点A在优弧BD上运动,四边形为平行四边形时,探究与的数量关系.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:B.【点睛】此题考查中心对称图形的特点,解题关键在于判断中心对称图形的关键是旋转180°后能够重合.2、C【分析】根据完美点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意方程有两个相等的实数根,求得4ac=9,再根据方程的根为=,从而求得a=-1,c=-,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.【详解】解:令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32-4ac=0,即4ac=9,
又方程的根为=,
解得a=-1,c=-,
故函数y=ax2+4x+c-=-x2+4x-3,
如图,该函数图象顶点为(2,1),与y轴交点为(0,-3),由对称性,该函数图象也经过点(4,-3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=-x2+4x-3的最小值为-3,最大值为1,
∴2≤m≤4,
故选:C.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,利用分类讨论以及数形结合的数学思想得出是解题关键.3、C【分析】连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH的长,利用三角形的面积公式即可求出△ODE的面积,进而可得出正六边形ABCDEF的面积.【详解】解:如图示,连接OE、OD,
∵六边形ABCDEF是正六边形,
∴∠DEF=120°,
∴∠OED=60°,
∵OE=OD=R,
∴△ODE是等边三角形,
作OH⊥ED,则∴∴故选:C.【点睛】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键.4、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.5、C【分析】根据平移原则:上→加,下→减,左→加,右→减写出解析式.【详解】解:将二次函数y=x2的图象向右平移一个单位长度,再向下平移1个单位长度所得的图象解析式为:y=(x﹣1)2﹣1.故选:C.【点睛】主要考查了函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6、D【分析】①只需根据抛物线的开口、对称轴的位置、与y轴的交点位置就可得到a、b、c的符号,从而得到abc的符号;②只需利用抛物线对称轴方程x==1就可得到2a与b的关系;③只需结合图象就可得到当x=1时y=a+b+c最小,从而解决问题;④根据抛物线x=图象在x轴上方,即可得到x=所对应的函数值的符号;⑤由可得,然后利用抛物线的对称性即可解决问题;⑥根据函数图像,即可解决问题.【详解】解:①由抛物线的开口向下可得a>0,
由对称轴在y轴的右边可得x=>0,从而有b<0,
由抛物线与y轴的交点在y轴的负半轴上可得c<0,
则abc>0,故①错误;
②由对称轴方程x==1得b=-2a,即2a+b=0,故②正确;
③由图可知,当x=1时,y=a+b+c最小,则对于任意实数m(),都满足,即,故③正确;
④由图像可知,x=所对应的函数值为正,
∴x=时,有a-b+c>0,故④错误;
⑤若,且x1≠x2,
则,
∴抛物线上的点(x1,y1)与(x2,y2)关于抛物线的对称轴对称,
∴1-x1=x2-1,即x1+x2=2,故⑤正确.⑥由图可知,当时,函数值有正数,也有负数,故⑥错误;∴正确的有②③⑤;故选:D.【点睛】本题主要考查了抛物线的性质(开口、对称轴、对称性、最值性等)、抛物线上点的坐标特征等知识,运用数形结合的思想即可解决问题.7、B【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为1,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[1×39+(90-90)2]÷40<1,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.8、B【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得1a+b=0,故①正确;当x=﹣1时,y=4a﹣1b+c<0,故②正确;该函数图象与x轴有两个交点,则b1﹣4ac>0,故③正确;∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选B.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.9、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n=1,然后计算m+n即可.【详解】x2-4x+3=0,
x2-4x=-3
x2-4x+4=-3+4,
(x-2)2=1,
即n=1.
故选B.【点睛】本题考查了解一元二次方程的应用,解题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).10、D【解析】分析:必然事件指在一定条件下一定发生的事件,据此解答即可.详解:A.打开电视,它正在播广告是随机事件;B.抛掷一枚硬币,正面朝上是随机事件;C.打雷后下雨是随机事件;D.∵一年有365天,∴367人中有至少两个人的生日相同是必然事件.故选D.点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.12、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据是王牌的张数为1可得出结论.【详解】∵13张牌全是黑桃,王牌是1张,∴抽到王牌的概率是1÷13=1,故答案为:1.【点睛】本题考查了概率的公式计算,熟记概率=所求情况数与总情况数之比是解题的关键.14、【分析】由已知条件可得出点P的纵坐标为4,则就等于点P的纵坐标与其横坐标的比值.【详解】解:由题意可得,∵,∴点P的纵坐标为4,∴就等于点P的纵坐标与其横坐标的比值,∴.故答案为:.【点睛】本题考查的知识点是正弦与正切的定义,熟记定义内容是解此题的关键.15、【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案为.【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.16、1:1【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可求得地图的比例尺.【详解】解:因为,所以这幅地图的比例尺是.故答案为:1:1.【点睛】本题考查比例尺.比例尺=图上距离:实际距离,在计算比例尺时一定要将实际距离与地图上的距离的单位化统一.17、<<>【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由抛物线的开口方向向下可推出a<1;因为对称轴在y轴左侧,对称轴为x=<1,又因为a<1,∴b<1;由抛物线与y轴的交点在y轴的正半轴上,∴c>1.【点睛】本题考查了二次函数的图象和性质,属于简单题,熟悉二次函数的图象是解题关键.18、【分析】直接利用已知得出,代入进而得出答案.【详解】∵∴∴==故填:.【点睛】此题主要考查了比例的性质,正确运用已知变形是解题关键.三、解答题(共78分)19、(1)2(2)8【解析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN的面积.【详解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面积为36,点M为BC的中点∴△ABM的面积为:36÷2=18∵△ADN和△ABM的相似比为∴∴=8考点:相似三角形的判定与性质20、9【分析】过点A作AD⊥BC于D,根据锐角三角函数求出AD,然后根据三角形的面积公式计算面积即可.【详解】解:过点A作AD⊥BC于D在Rt△ABD中,AB=4,∠B=60°∴AD=AB·sinB=∴S△ABC=BC·AD==9【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.21、(1)(2)();(3)或【分析】(1)过点作,垂足为点.,则.根据构建方程求出即可解决问题.(2)①证明,可得,由此构建关系式即可解决问题.②分两种情形:当时,当时,分别求解即可解决问题.【详解】解:(1)是等边三角形,,.,,,,,,.过点作,垂足为点.设,则.在中,,,,,在中,,,解得.所以线段的长是.(2)①设,则,.,,,又,,,又,,,由(1)得在中,,,,.②当时,,则有,整理得,解得或(舍弃),.当时,同法可得当时,,整理得,解得(舍弃)或1,.综上所述:当∠CAD<120°时,;当120°<∠CAD<180°时,.【点睛】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.22、1【分析】连接OB,OC,根据圆周角定理得到∠BOC=60°,根据等边三角形的性质即可得到结论.【详解】解:连接OB,OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC=4,∴⊙O的直径=1.【点睛】本题考查三角形的外接圆与外心,等边三角形的判定和性质,解题关键是正确的作出辅助线.23、(1);(2)(x取整数);(3)第10天销售额达到最大,最大销售额是4500元【分析】(1)是分段函数,利用待定系数法可得y与x的函数关系式;
(2)从表格中的数据上看,是成一次函数,且也是分段函数,同理可得p与x的函数关系式;
(3)根据销售额=销量×销售单价,列函数关系式,并配方可得结论.【详解】解:(1)①当时,设(),把点(0,14),(5,9)代入,得,解得:,∴;②当时,,∴(x取整数);(2)∴(x取整数);(3)设销售额为元,①当时,=,∴当时,;②当时,,∴当时,;③当时,,∴当时,,综上所述:第10天销售额达到最大,最大销售额是4500元;【点睛】本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.24、详见解析.【分析】三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,EM,EN分别AB,CD于F,G使得∠BEM=∠AEN=60°,可证△BEF为等边三角形,即EB=EF,故B的对应点为F.根据SAS可证,即EA=GE,故A的对应点为G.由此可得:要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,平行四边形ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC.【详解】解:要使该模板旋转60°后,三个顶点仍在的边上,的角和边需要满足的条件是:∠ABC=60°,AB=BC理由如下:三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,使得∠BEM=∠AEN=60°,∵AE⊥BC,即∠AEB=∠AEC=90°,∴∠BEM<∠BEA∴射线EM只能与AB边相交,记交点为F在△BEF中,∵∠B=∠BEF=60°,∴∠BFE=180°-∠B-∠BEF=60°∴∠B=∠BEF=∠BFE=60°∴△BEF为等边三角形∴EB=EF∵当三角形模板绕点E旋转60°后,点B的对应点为F,此时点F在边AB边上∵∠AEC=90°∴∠AEN=60°<∠AEC∴射线EN只可能与边AD或边CD相交若射线EN与CD相交,记交点为G在Rt△AEB中,∠1=90°-∠B=30°∴BE=∵AB=BC=BE+EC∴EC=∵∠GEC=∠AEC-∠AEG=90°-60°=30°∵在中,AB//CD∠C=180°-∠ABC=120°又∵∠EGC=180°-120°-30°=30°∴EC=GC即AF=EF=EC=GC=,且∠1=∠GEC=30°∴∴EA=GE∴当三角形模板绕点E旋转60°后,点A的对应点为G,此时点G在边CD边上∴只有当∠ABC=60°,AB=BC时,三角形模板绕点E顺时针旋转60°后,三个顶点仍在平行四边形ABCD的边上.∴要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,平行四边形ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC.【点睛】本题考查了旋转的性质以及平行四边形的判定及性质,掌握平行四边形的性质及判定是解题的关键.25、(1)见解析;(2)的半径为2;(3)①见解析;②.【分析】(1)连接OC,由OA=OC得,根据折叠的性质得∠1=∠3,∠F=∠AEC=90°,则∠2=∠3,于是可判断OC∥AF,根据平行线的性质得,然后根据切线的性质得直线FC与⊙O相切;
(2)首先证明△OBC是等边三角形,在Rt△OCE中,根据OC2=OE2+CE2,构建方程即可解决问题;
(3)①根据等角的余角相等证明即可;
②利用圆的面积公式求出OB,由△GCB∽△GAC,可得,由此构建方程即可解决问题;【详解】解:(1)证明:连结,则,,,,又,即直线垂直于半径,且过的外端点,是的切线;(2)点是斜边的中点,,是等边三角形,且是的高,在中,,即解得,即的半径为2;(3)①∵OC=OB,∴,,,.②,,由①知:,,即,,解得:.【点睛】本题属于圆综合题,考查了切线的判定,解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想思考问题,属于中考压轴题.26、(1)140°;(2)当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时,+=60°;点O在∠BAD外部时,|-|=60°.【解析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根据圆周角定理易得∠BOD=2∠BAD=140°;(2)分点O在∠BAD内部和外部两种情形分类讨论:①当点O在∠BAD内部时,首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②当点O在∠BAD外部时:Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《骆驼寻宝记》教学设计
- 环保工程师劳动合同聘用协议书
- 生态农业园区建设施工合同
- 生物科技二手房交易模板
- 租赁车辆防雾霾装备要求
- 城市交通规划公众参与
- 矿山工程招投标模板
- 广告拍摄墙体壁画施工合同
- 居民区翻新施工合同
- 化妆品租赁田地合同
- 2024产学研合作框架协议
- 唐诗宋词人文解读智慧树知到期末考试答案章节答案2024年上海交通大学
- 《电视摄像》电子教案
- 火龙罐综合灸疗法
- 深圳市中小学生流感疫苗接种知情同意书
- 射线、直线和角(张冬梅)
- 数据、模型与决策(运筹学)课后习题和案例答案007
- 道路运输达标车辆核查记录表(货车)
- 《梁山伯与祝英台》PPT课件.ppt
- 四年级上学期道德与法治期末质量分析【六篇】
- 国有企业改革重组工作实施方案
评论
0/150
提交评论