版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年黑龙江省大庆市一中学数学九年级第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>02.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:163.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.84.如图所示的网格是正方形网格,则sinA的值为()A. B. C. D.5.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数6.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.7.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.128.对于反比例函数,下列说法正确的是()A.图象经过点 B.图象位于第二、四象限C.图象是中心对称图形 D.当时,随的增大而增大9.如图,切于两点,切于点,交于.若的周长为,则的值为()A. B. C. D.10.已知反比例函数,则下列结论正确的是()A.点(1,2)在它的图象上B.其图象分别位于第一、三象限C.随的增大而减小D.如果点在它的图象上,则点也在它的图象上11.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A.40cm2 B.20cm2C.25cm2 D.10cm212.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.二、填空题(每题4分,共24分)13.如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_________.14.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为__________15.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线;③顶点坐标为;④时,图像从左至右呈下降趋势.其中正确的结论是_______________(只填序号).16.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.17.在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是_____________.18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①阴影部分的面积为;②若B点坐标为(0,6),A点坐标为(2,2),则;③当∠AOC=时,;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____________(填写正确结论的序号).三、解答题(共78分)19.(8分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.20.(8分)如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,;(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.21.(8分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.22.(10分)解方程23.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点A,与y轴交于点B(0,4),OA=OB,点C(﹣3,n)在直线l1上.(1)求直线l1和直线OC的解析式;(2)点D是点A关于y轴的对称点,将直线OC沿y轴向下平移,记为l2,若直线l2过点D,与直线l1交于点E,求△BDE的面积.24.(10分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.25.(12分)如图,在中,.以为直径的与交于点,与交于点,点在边的延长线上,且.(1)试说明是的切线;(2)过点作,垂足为.若,,求的半径;(3)连接,设的面积为,的面积为,若,,求的长.26.如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.(1)求点A,点B的坐标;(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.2、C【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【详解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积的比等于相似比的平方.3、C【分析】根据垂径定理得出BC=AB,再根据勾股定理求出OC的长:【详解】∵OC⊥AB,AB=16,∴BC=AB=1.在Rt△BOC中,OB=10,BC=1,∴.故选C.4、C【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵,BC=2,AD=,∵S△ABC=AB•CE=BC•AD,∴CE=,∴,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.5、C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.6、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.7、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.8、C【分析】根据反比例函数的图象和性质,可对各个选项进行分析,判断对错即可.【详解】解:A、∵当x=1时,y=1,∴函数图象过点(1,1),故本选项错误;B、∵,∴函数图象的每个分支位于第一和第三象限,故本选项错误;C、由反比例函数的图象对称性可知,反比例函数的图象是关于原点对称,图象是中心对称图,故本选项正确;D、∵,∴在每个象限内,y随着x的增大而减小,故本选项错误;故选:C.【点睛】本题重点考查反比例函数的图象和性质,熟练掌握反比例函数图象和性质是解题的关键.9、A【分析】利用切线长定理得出,然后再根据的周长即可求出PA的长.【详解】∵切于两点,切于点,交于∴的周长为∴故选:A.【点睛】本题主要考查切线长定理,掌握切线长定理是解题的关键.10、D【分析】根据反比例函数图象上点的坐标特征以及反比例函数的性质解答即可.【详解】解:∵∴图象在二、四象限,y随x的增大而增大,选项A、B、C错误;∵点在函数的图象上,∴∵点横纵坐标的乘积∴则点也在函数的图象上,选项D正确.故选:D.【点睛】本题考查的知识点是反比例函数的的性质,掌握反比例函数图象的特征及其性质是解此题的关键.11、B【解析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,
∵矩形的对边DG∥EF,
∴△ADG∽△ABC,∴,即,解得DG=(8-x),
四边形DEFG的面积=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,
所以,当x=4,即DE=4时,四边形DEFG最大面积为10cm1.
故选B.【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.12、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.二、填空题(每题4分,共24分)13、4【分析】作AE⊥x轴于点E,BD⊥x轴于点D得出△OBD∽△OAE,根据面积比等于相似比的平方结合反比例函数的几何意义求出,再利用条件“AO=AC”得出,进而分别求出和相减即可得出答案.【详解】作AE⊥x轴于点E,BD⊥x轴于点D∴△OBD∽△OAE∴根据反比例函数的几何意义可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案为4.【点睛】本题考查的是反比例函数与几何的综合,难度系数较大,需要熟练掌握反比例函数的几何意义.14、【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC是30°直角三角形,设DE=a,将OC,CD用a表示,最后代入即可解答.【详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a,CN=CE=a∴OC=CN=∴故答案为.【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.15、①③④【分析】根据二次函数的性质对各小题分析判断即可得解.【详解】解:在抛物线中,∵,∴抛物线的开口向下;①正确;∴对称轴为直线;②错误;∴顶点坐标为;③正确;∴时,图像从左至右呈下降趋势;④正确;∴正确的结论有:①③④;故答案为:①③④.【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.16、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得∠COE=90°,根据含30°角的直角三角形的性质可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的长,根据S阴影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【详解】如图,连接CE,∵AC=6,AC、CE为扇形ACB的半径,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圆的直径,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S阴影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案为:【点睛】本题考查扇形面积、含30°角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.17、(2,﹣1)【详解】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反.18、②④【分析】由题意作AE⊥y轴于点E,CF⊥y轴于点F,①由S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1-k2);②由平行四边形的性质求得点C的坐标,根据反比例函数图象上点的坐标特征求得系数k2的值.③当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;④若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,同时也关于y轴对称.【详解】解:作AE⊥y轴于E,CF⊥y轴于F,如图:∵S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|);而k1>0,k2<0,∴S阴影部分=(k1-k2),故①错误;②∵四边形OABC是平行四边形,B点坐标为(0,6),A点坐标为(2,2),O的坐标为(0,0).∴C(-2,4).又∵点C位于y=上,∴k2=xy=-2×4=-1.故②正确;当∠AOC=90°,∴四边形OABC是矩形,
∴不能确定OA与OC相等,而OM=ON,
∴不能判断△AOM≌△CNO,
∴不能判断AM=CN,
∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=-k2,
∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.
故答案是:②④.【点睛】本题属于反比例函数的综合题,考查反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键.三、解答题(共78分)19、(1);(2);(2)点的坐标是或【分析】(1)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入求得a的值即可;
(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
(2)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=2t,P(-2t,2+t),将P(-2t,2+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【详解】解:(1)抛物线的对称轴为x=-=-1.
∵a<0,
∴抛物线开口向下.
又∵抛物线与x轴有交点,
∴C在x轴的上方,
∴抛物线的顶点坐标为(-1,4).
设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入得:4a+4=0,解得:a=-1,
∴抛物线的解析式为y=-x2-2x+2.
(2)将x=0代入抛物线的解析式得:y=2,
∴B(0,2).
∵C(-1,4)、B(0,2)、A(-2,0),
∴BC=,AB=2,AC=2,
∴BC2+AB2=AC2,
∴∠ABC=90°.
∴.即的正切值等于.
(2)如图1所示:记抛物线与x轴的另一个交点为D.
∵点D与点A关于x=-1对称,
∴D(1,0).
∴tan∠DBO=.
又∵由(2)可知:tan∠CAB=.
∴∠DBO=∠CAB.
又∵OB=OA=2,
∴∠BAO=∠ABO.
∴∠CAO=∠ABD.
∴当点P与点D重合时,∠ABP=∠CAO,
∴P(1,0).
如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.
∵BF∥AO,
∴∠BAO=∠FBA.
又∵∠CAO=∠ABP,
∴∠PBF=∠CAB.
又∵PE∥BF,
∴∠EPB=∠PBF,
∴∠EPB=∠CAB.
∴tan∠EPB=.
设BE=t,则PE=2t,P(-2t,2+t).
将P(-2t,2+t)代入抛物线的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.
∴P(-,).
综上所述,点P的坐标为P(1,0)或P(-,).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含t的式子表示点P的坐标是解题的关键.20、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD【解析】试题分析:(1)由x=0时带入y=x-1求出y的值求出B的坐标,当x=-3时,代入y=x-1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;(1)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和1S△BPD建立方程求出其解即可.(3)如图1,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论.试题解析:∵y=x-1,∴x=0时,y=-1,∴B(0,-1).当x=-3时,y=-4,∴A(-3,-4).∵y=x1+bx+c与直线y=x-1交于A、B两点,∴∴∴抛物线的解析式为:y=x1+4x-1;(1)∵P点横坐标是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如图1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m1=-1,m3=如图1②,作BE⊥PC于E,∴BE=-m.PD=1-4m-m1+1-m=1-4m-m1,解得:m=0(舍去)或m=-3,∴m=,-1,或-3时S四边形OBDC=1S△BPD;)如图1,当∠APD=90°时,设P(a,a1+4a-1),则D(a,a-1),∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m1,∴DP=1-4m-m1-1+m=-3m-m1.在y=x-1中,当y=0时,x=1,∴(1,0),∴OF=1,∴CF=1-m.AF=4∵PC⊥x轴,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,∴解得:m=1舍去或m=-1,∴P(-1,-5)如图3,当∠PAD=90°时,作AE⊥x轴于E,∴∠AEF=90°.CE=-3-m,EF=4,AF=4PD=1-m-(1-4m-m1)=3m+m1.∵PC⊥x轴,∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴AD=(-3-m)∵△PAD∽△FEA,∴∴m=-1或m=-3∴P(-1,-5)或(-3,-4)与点A重合,舍去,∴P(-1,-5).考点:二次函数综合题.21、(4)x4=,x2=;(2)x4=-3,x2=2.【解析】试题分析:(4)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,∴△=b2-4ac=(-3)2-4×4×4=3.∴x=.即x4=,x2=;(2)∵因式分解得(x+3)(x-2)=4,∴x+3=4或x-2=4,解得x4=-3,x2=2.考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.22、;【分析】(1)根据因式分解法即可求解;(2)根据特殊角的三角函数值即可求解.【详解】∴x-2=0或2x-6=0解得;===1.【点睛】此题主要考查一元二次方程的求解及特殊角的三角函数值的运算,解题的关键是熟知方程的解法及特殊角的三角函数值.23、(1)直线I1的解析式:y=2x+4,直线OC解析式y=x;(2)S△BDE=16.【分析】(1)根据题意先求A的坐标,然后待定系数就AB解析式,把点C的坐标代入,可得n,即可求得直线OC解析式;(2)根据对称性先去D的坐标,根据直线平移,k不变,可求DE解析式,然后求E的坐标,即可求出面积.【详解】解:(1)∵点B(0,4),OA=OB,∴OA=OB==2,∴A(﹣2,0),设OA解析式y=kx+b,∴解得:,∴直线I1的解析式:y=2x+4,∵C(﹣3,n)在直线l1上,∴n=﹣3×2+4n=﹣2∴C(﹣3,﹣2)设OC的解析式:y=k1x∴﹣2=﹣3k1k1=,∴直线OC解析式y=x;(2)∵D点与A点关于y轴对称∴D(2,0)设DE解析式y=x+b′,∴0=×2+b′,∴b′=﹣,∴DE解析式y=x﹣,当x=0,y=﹣,解得:,∴E(﹣4,﹣4),∴S△BDE=×(2+2)(4+4)=16.【点睛】本题考查了两条直线相交与平行问题,用待定系数法解一次函数,一次函数的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市销售系统课程设计
- 超市购物c 程序课程设计
- 超市营销方案课程设计
- 2024年度建筑施工合同:某建筑公司与开发商之间的建筑施工条款
- 2024年度货币赔偿及合同违约责任免除
- 二零二四年吊车维修与租赁合同
- 二零二四年度网络安全与防护监督管理合同
- 2024年度货物买卖合同(增值税专用发票)
- 超声波避障课程设计
- 2024年汽车销售与售后服务合同
- 安全教育水果蔬菜要洗净
- 矿泉水厂建设项目实施方案
- 石油化工班组安全生产标准化建设活动实施方案
- 【知识解析】人民英雄纪念碑主题图集
- 关于高速公路交通安全设施的设置
- 2023-2024年大学试题(大学选修课)-走近中华优秀传统文化考试题库(含答案)
- 沟通的艺术(湖南师范大学)【智慧树知到】章节答案
- 《冬牧场》读书笔记思维导图PPT模板下载
- 老舍《我的母亲》原文阅读
- 安徽徽商银行总行合规部招聘金牌冲刺卷I试题3套含答案详解
- 言语的第一思维找重点句
评论
0/150
提交评论