2023年河南省郑州市中学牟县九年级数学第一学期期末经典试题含解析_第1页
2023年河南省郑州市中学牟县九年级数学第一学期期末经典试题含解析_第2页
2023年河南省郑州市中学牟县九年级数学第一学期期末经典试题含解析_第3页
2023年河南省郑州市中学牟县九年级数学第一学期期末经典试题含解析_第4页
2023年河南省郑州市中学牟县九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河南省郑州市中学牟县九年级数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2 B. C. D.2.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是()A.180(1+x)=300 B.180(1+x)2=300C.180(1﹣x)=300 D.180(1﹣x)2=3003.等腰直角△ABC内有一点P,满足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.则CP的长等于()A. B.2 C.2 D.34.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.15.将抛物线向左平移个单位长度,再向.上平移个单位长度得到的抛物线的解析式为()A. B.C. D.6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.7.两相似三角形的相似比为,它们的面积之差为15,则面积之和是()A.39 B.75 C.76 D.408.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cm9.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B. C. D.10.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.11.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个12.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟 B.70分钟 C.80分钟 D.90分钟二、填空题(每题4分,共24分)13.小球在如图6所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是____.

14.在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是_______.15.如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)16.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).18.如图,在Rt△ABC中,,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.三、解答题(共78分)19.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为.(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率.20.(8分)在矩形中,,,点是边上一点,交于点,点在射线上,且是和的比例中项.(1)如图1,求证:;(2)如图2,当点在线段之间,联结,且与互相垂直,求的长;(3)联结,如果与以点、、为顶点所组成的三角形相似,求的长.21.(8分)已知关于的一元二次方程:.(1)求证:对于任意实数,方程都有实数根;(2)当为何值时,方程的两个根互为相反数?请说明理由.22.(10分)如图,抛物线y=ax2+bx+c(a≠0)过点M(-2,3),顶点坐标为N(-1,4),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当PM+PB的值最小时,求点P的坐标;23.(10分)已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限内不同的两点A(5,n),B(3,9),求此抛物线的解析式.24.(10分)如图,在△ABC中,利用尺规作图,画出△ABC的内切圆.25.(12分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?26.计算:(1)(2)

参考答案一、选择题(每题4分,共48分)1、D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故答案选:D.【点睛】本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.2、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.故选:B.【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.3、B【分析】先利用定理求得,再证得,利用对应边成比例,即可求得答案.【详解】如图,∵∠BAC=90°,AB=AC,∴,,设,则,如图,∴,∴,∴,∴,∵,∴,∴,故选:B【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,熟练运用相似三角形的判定和性质是本题的关键.4、B【解析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(1,1),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=1.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=×(1+1)×1=2,从而得出S△AOB=2.【详解】∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是1和4,∴当x=1时,y=1,即A(1,1),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=1,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=×(1+1)×1=2,∴S△AOB=2,故选B.【点睛】本题考查了反比例函数中k的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=|k|是解题的关键.5、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向左平移4个单位长度得点(0,-4),再向上平移1个单位长度得到点(-4,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线先向左平移个单位长度,得到的抛物线解析式为,再向上平移个单位长度得到的抛物线解析式为,故选:.【点睛】本题考查的是抛物线平移,根据抛物线平移规律“左移加右移减,上移加下移减”写出平移后的抛物线解析式.需要注意左平移是加,右平移是减.6、C【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.7、A【分析】由两相似三角形的相似比为,得它们的面积比为4:9,设它们的面积分别为4x,9x,列方程,即可求解.【详解】∵两相似三角形的相似比为,∴它们的面积比为4:9,设它们的面积分别为4x,9x,则9x-4x=15,∴x=3,∴9x+4x=13x=13×3=39.故选A.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.8、C【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【点睛】本题主要考查成比例线段,解题突破口是根据定义ad=cb,将a,b及c的值代入计算.9、B【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC=,∴PA=tan60°×1=.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.10、D【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选D.【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.11、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,

解得:,(不合题意,舍去),当x<0时,,即:,

解得:,,∴函数的图象上的“好点”共有3个.

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.12、C【分析】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.想办法求出AQ、CQ即可解决问题.【详解】解:如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=≈80(分钟),故选:C.【点睛】本题考查了解直角三角形的应用,熟练掌握并灵活运用是解题的关键.二、填空题(每题4分,共24分)13、【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【详解】由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=.考点:概率.14、(0,-1)【分析】在平面直角坐标系中画出图形,根据已知条件列出方程并求解,从而确定点关于点中心对称的点的坐标.【详解】解:连接并延长到点,使,设,过作轴于点,如图:在和中∴∴,∵,∴,∴,∴故答案是:【点睛】本题考查了一个点关于某个点对称的点的坐标,关键在于掌握点的坐标的变化规律.15、【分析】由解直角三角形,得,即可求出AB的值.【详解】解:根据题意,△ABC是直角三角形,∠A=90°,∴,∴;∴大楼AB的高度为米.故答案为:.【点睛】此题考查了解直角三角形的应用——仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.16、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【点睛】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.17、1.2【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.18、9【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD∽△BAC,∴,∴,∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.三、解答题(共78分)19、(1)袋子中白球有4个;(2)【分析】(1)设白球有

x

个,利用概率公式得方程,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解.【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20、(1)详见解析;(2);(1)的长分别为或1.【分析】(1)由比例中项知,据此可证得,再证明可得答案;(2)先证,结合,得,从而知,据此可得,由(1)得,据此知,求得;(1)分和两种情况分别求解可得.【详解】(1)证明:∵是和的比例中项∴∵∴∴∵∴∵∴∴∴(2)解:∵与互相垂直∴∵∴∴由(1)得∴∴∴∵,,∴∴由(1)得∴∴∴∵∴∴(1)∵,又,由(1)得∴当与以点、、为顶点所组成的三角形相似时1),如图∴由(2)得:2),如图过点作,垂足为点由(1)得∴∴又设,则,,又∴,解得∴综上所述,的长分别为或1.【点睛】本题考查了相似三角形的判定定理,利用三角形相似以及相关的等量关系来求解MN和DE的长.21、(1)见解析;(2)1,理由见解析.【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.试题解析:(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.∴当t=1时,方程的两个根互为相反数.考点:根与系数的关系;根的判别式.22、(1)二次函数的解析式为:;(2)点P的坐标为(-1,2)【分析】(1)把顶点N的坐标和点M的坐标代入计算,即可求出抛物线的解析式;(2)先求出点A、B的坐标,连接AM,与对称轴相交于点P,求出直线AM的解析式,即可求出点P的坐标.【详解】解:(1)由抛物线y=ax2+bx+c(a≠0)的图象过点M(-2,3),顶点坐标为N(-1,4),得到关于a、b、c的方程组:解得:a=-1,b=2,c=3,∴二次函数的解析式为:.(2)如图:连接AM,与对称轴相交于点P,连接BP,∵抛物线与x轴相交于点A、B,则点A、B关于抛物线的对称轴对称,∴PA=PB,∴PM+PB的最小值为PA+PM=AM的长度;∵,令y=0,则∴,∴,,∴点A的坐标为:(1,0),∵点M的坐标为(2,3),∴直线AM的解析式为:,当x=时,y=2,∴点P的坐标为(1,2);【点睛】本题考查了二次函数的性质,解一元二次方程,一次函数的性质,待定系数法求解析式,最短路径问题,解题的关键是熟练掌握所学的知识,正确得到点P的坐标.23、y=-x2+4x+2.【分析】根据点B的坐标可求出m的值,写出一次函数的解析式,并求出点A的坐标,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论