黑龙江省哈尔滨三十二中2024届高三毕业班适应性训练数学试题_第1页
黑龙江省哈尔滨三十二中2024届高三毕业班适应性训练数学试题_第2页
黑龙江省哈尔滨三十二中2024届高三毕业班适应性训练数学试题_第3页
黑龙江省哈尔滨三十二中2024届高三毕业班适应性训练数学试题_第4页
黑龙江省哈尔滨三十二中2024届高三毕业班适应性训练数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨三十二中2024届高三毕业班适应性训练数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则等于()A.-3 B.-1 C.3 D.02.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.23.已知集合,集合,若,则()A. B. C. D.4.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.2825.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,6.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则7.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.8.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.9.已知集合,则等于()A. B. C. D.10.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.11.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.12.已知集合,,则()A. B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________.14.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.15.在中,,,,则__________.16.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.18.(12分)网络看病就是国内或者国外的单个人、多个人或者单位通过国际互联网或者其他局域网对自我、他人或者某种生物的生理疾病或者机器故障进行查找询问、诊断治疗、检查修复的一种新兴的看病方式.因此,实地看病与网络看病便成为现在人们的两种看病方式,最近某信息机构调研了患者对网络看病,实地看病的满意程度,在每种看病方式的患者中各随机抽取15名,将他们分成两组,每组15人,分别对网络看病,实地看病两种方式进行满意度测评,根据患者的评分(满分100分)绘制了如图所示的茎叶图:(1)根据茎叶图判断患者对于网络看病、实地看病那种方式的满意度更高?并说明理由;(2)若将大于等于80分视为“满意”,根据茎叶图填写下面的列联表:满意不满意总计网络看病实地看病总计并根据列联表判断能否有的把握认为患者看病满意度与看病方式有关?(3)从网络看病的评价“满意”的人中随机抽取2人,求这2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,,平面平面,为中点.(1)求证:平面;(2)若,求二面角的余弦值大小.20.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.21.(12分)如图所示,在四棱锥中,平面,底面ABCD满足AD∥BC,,,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值.22.(10分)如图,在四棱锥中,是等边三角形,,,.(1)若,求证:平面;(2)若,求二面角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.2、B【解题分析】

求出圆心,代入渐近线方程,找到的关系,即可求解.【题目详解】解:,一条渐近线,故选:B【题目点拨】利用的关系求双曲线的离心率,是基础题.3、A【解题分析】

根据或,验证交集后求得的值.【题目详解】因为,所以或.当时,,不符合题意,当时,.故选A.【题目点拨】本小题主要考查集合的交集概念及运算,属于基础题.4、B【解题分析】

将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【题目详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【题目点拨】本题考查三视图还原几何体,求组合体的表面积,属于中档题5、D【解题分析】

根据指数函数的图象和特征以及图象的平移可得正确的选项.【题目详解】从题设中提供的图像可以看出,故得,故选:D.【题目点拨】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.6、C【解题分析】

根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【题目详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【题目点拨】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.7、A【解题分析】

先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【题目详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【题目点拨】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.8、B【解题分析】

由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【题目详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【题目点拨】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.9、C【解题分析】

先化简集合A,再与集合B求交集.【题目详解】因为,,所以.故选:C【题目点拨】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.10、A【解题分析】

点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【题目详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【题目点拨】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.11、B【解题分析】

求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【题目详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【题目点拨】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.12、D【解题分析】

首先求出集合,再根据补集的定义计算可得;【题目详解】解:∵,解得∴,∴.故选:D【题目点拨】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.【题目详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方.记外接球半径为,∴当时,.故答案为:.【题目点拨】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和.14、【解题分析】分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,即可求出线段OP的长.详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则∵∠APB的大小恒为定值,

∴t=,∴|OP|=.故答案为点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题.15、1【解题分析】

由已知利用余弦定理可得,即可解得的值.【题目详解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案为:1.【题目点拨】本题主要考查余弦定理在解三角形中的应用,属于基础题.16、充分不必要【解题分析】

由余弦的二倍角公式可得,即或,即可判断命题的关系.【题目详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【题目点拨】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)因为,所以,由余弦定理得,化简得,可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号).由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.18、(1)实地看病的满意度更高,理由见解析;(2)列联表见解析,有;(3).【解题分析】

(1)对实地看病满意度更高,可以从茎叶图四个方面选一个回答即可;(2)先完成列联表,再由独立性检验得有的把握认为患者看病满意度与看病方式有关;(3)利用古典概型的概率公式求得这2人平分都低于90分的概率.【题目详解】(1)对实地看病满意度更高,理由如下:(i)由茎叶图可知:在网络看病中,有的患者满意度评分低于80分;在实地看病中,有的患者评分高于80分,因此患者对实地看病满意度更高.(ii)由茎叶图可知:网络看病满意度评分的中位数为73分,实地看病评分的中位数为87分,因此患者对实地看病满意度更高.(iii)由茎叶图可知:网络看病的满意度评分平均分低于80分;实地看病的满意度的评分平均分高于80分,因此患者对实地看病满意度更高.(iV)由茎叶图可知:网络看病的满意度评分在茎6上的最多,关于茎7大致呈对称分布;实地看病的评分分布在茎8,上的最多,关于茎8大致呈对称分布,又两种看病方式打分的分布区间相同,故可以认为实地看病评分比网络看病打分更高,因此实地看病的满意度更高.以上给出了4种理由,考生答出其中任意一一种或其他合理理由均可得分.(2)参加网络看病满意度调查的15名患者中共有5名对网络看病满意,10名对网络看病不满意;参加实地看病满意度调查的15名患者中共有10名对实地看病满意,5名对实地看病不满意.故完成列联表如下:满意不满意总计网络看病51015实地看病10515总计151530于是,所以有的把握认为患者看病满意度与看病方式有关.(3)网络看病的评价的分数依次为82,85,85,88,92,由小到大分别记为,从网络看病的评价“满意”的人中随机抽取2人,所有可能情况有:;;;共10种,其中,这2人评分都低于90分的情况有:;;共6种,故由古典概型公式得这2人评分都低于90分的概率.【题目点拨】本题主要考查茎叶图的应用和独立性检验,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平.19、(1)见解析;(2)【解题分析】

(1)设中点为,连接、,首先通过条件得出,加,可得,进而可得平面,再加上平面,可得平面平面,则平面;(2)设中点为,连接、,可得平面,加上平面,则可如图建立直角坐标系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【题目详解】(1)证明:设中点为,连接、,为等边三角形,,,,,,即,,,平面,平面,平面,为的中位线,,平面,平面,平面,、为平面内二相交直线,平面平面,平面DMN,平面;(2)设中点为,连接、为等边三角形,是等腰三角形,且顶角,,、、共线,,,,,平面平面.平面平面平面,交线为,平面平面.设,则在中,由余弦定理,得:又,,,,,为中点,,建立直角坐标系(如图),则,,,.,,设平面的法向量为,则,,取,则,,平面的法向量为,,二面角为锐角,二面角的余弦值大小为.【题目点拨】本题考查面面平行证明线面平行,考查向量法求二面角的大小,考查学生计算能力和空间想象能力,是中档题.20、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由正弦定理边化角,再结合转化即可求解;(Ⅱ)可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【题目详解】(Ⅰ)由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.(Ⅱ)设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【题目点拨】本题考查正弦定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论