《系统工程与运筹学》习题及答案 第10章课后习题答案_第1页
《系统工程与运筹学》习题及答案 第10章课后习题答案_第2页
《系统工程与运筹学》习题及答案 第10章课后习题答案_第3页
《系统工程与运筹学》习题及答案 第10章课后习题答案_第4页
《系统工程与运筹学》习题及答案 第10章课后习题答案_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【思考题】1.双代号网络图的构成及绘制原则是什么?解:双代号网络计划图是由若干表示工作的箭线和节点所组成的。绘制原则:(1)网络图必须正确表达已定的逻辑关系。(2)所有箭线方向必须由左到右,时间必须由现在到将来,严禁出现循环回路。(3)节点之间严禁出现双向箭头或无箭头的连线。(4)严禁出现没有箭头或没有箭尾的箭线。(5)箭线尽量避免交叉。(6)进入某事项的工作虽然可有多条,但由同一事项进入该事项的工作只能有一条。如遇此情况,必须引入虚工作予以消除。(7)只应有一个起点节点和一个终点节点。如果一项任务出现多个起点节点或终点节点,可引入虚工作予以消除。2.双代号网络图时间参数如何计算?解:(1)事项时间参数①事项的最早时间:设总开工事项编号为(1)。tE(1)=0tE(j)=max{tE(i)+t(i,j)}其中 tE(i)——与事项j相邻的各紧前事项的最早时间。②事项的最迟时间:tL(n)=总工期(或tE(n))tL(i)=min{tL(j)−t(i,j)}j其中tL(j)——与事项i相邻的各紧后事项的最迟时间。事项最迟开始时间从终点事项开始,按编号由大至小的顺序逐个由后向前计算。(2)工作的时间参数①工作最早开始时间ESi-j和最早完成时间EFi-j:ESi-j=max{ESk-i+Dk-i}=max{EFk-i}式中,ESk-i为工作i-j各紧前工作k-i的最早开始时间;Dk-i为k-i工作的持续时间;EFk-i为工作i-j各紧前工作k-i的最早完成时间:EFk–i=ESk-i+Dk-i。LSijLFij的计算:LFi-j=min{LFj-k-Dj-k}=min{LSj-k}kjkjkjkk为紧jk的最迟开始时间:LSjkLFjkDjk。(3)工作总时差TFi-j的计算:TFi-j=LSi-j-ESi-j=LFi-j-EFi-j(4)工作自由时差FFi-j的计算:

FFi-j=ESj-k-EFi-j3.网络优化包括哪些内容?其基本原理是什么?解:网络优化包括工期优化、费用优化和资源优化三种。网络图中各工作的持续时间有哪三种估计?其期望值和方差如何计算?解:包括最短估计时间a、最可能时间m、最长估计时间b三种时间估计。D=1[

a+2m+b+2m

]=a+4m+b2 3 3 6期望值的方差用σ2表示,其计算公式为:σ2=1[(

a+4m+b-a+2m

2+

a+4m+b-2m+b

2]=(

b-a22 6 3 6 3 6均方差(标准离差)是方差的正平方根,用σ表示,其计算公式为:2 b-a26网络时间参数及节点在规定期限完成的概率如何计算?解:(1)节点时差及实现概率。节点时间变动的范围称为节点时差,其值等于节点最早时间与最迟时间之差,用TF表示,即:TFi=LTi-ETiσ2)=σ2)+σ2)} (10-18)i i i式中,TFi——节点i的时差LTi——节点i的最迟时间ETi——节点i的最早时间σ2(TFi)——节点i时差的方差σ2(LTi)——节点i最迟时间的方差σ2(ETi)——节点i最早时间的方差网络计划中,TF=0的节点称为关键节点,关键节点及其顺序关系箭线组成关CPMTFTF及其方差σ2(TF)估计节点完成的概率,步骤如下:首先,根据式(10-19)求出正态分布偏移值Zi,然后,查表10.5.3,得出节点实现概率Pi。σσ2)+σ2)ii

Zi=

TFiσ)=

LTi-ETi

i(10-19)iTFi——节点i的时差LTi——节点i的最迟时间ETi——节点i的最早时间σ2(TFi)——节点i时差的方差σ2(LTi)——节点i最迟时间的方差σ2(ETi)——节点i最早时间的方差(2)节点在规定期限完成的概率。为求保证节点k在TPk期限内完成的概率,首先根据式(10-20)计算正态分布的偏离值Zk,然后查表10.5.3,得出节点在规定工期TPk完成的概率Pk。σ2)kσ2)kk式中,TPk——节点k的指定工期ETk——节点k的最早时间σ2(ETk)——节点k最早时间的方差【习题】1.关于双代号网络计划的说法,正确的有( BC)。A.可能没有关键线路B.至少有一条关键线路C.在计划工期等于计算工期时,关键工作为总时差为零的工作D.在网络计划执行工程中,关键线路不能转移E.由关键节点组成的线路,就是关键线路2.某网络计划中,工作A的紧后工作是B和C,工作B的最迟开始时间是最早开始时间是工作C的最迟完成时间是最早完成时间是作A与工作B和工作C的间隔时间均为5天,工作A的总时差为( B天。A.3 B.7 C.8 D.103.关于网络计划关键线路的说法,正确的有(ABD )。A.单代号网络计划中由关键工作组成的线路B.总持续时间最长的线路C.总持续时间最短的线路D.双代号网络计划中由关键工作连成的线路活动名称ABC活动名称ABCDEGH紧前工作//AAA,BCE(天)2334342解:活动名称ABCDEFGH活动名称ABCDEFGH紧前活动//AAB,CB,CD,ED,E,F持续时间(天)15326452解:工作名称ABCDE工作名称ABCDEFGH紧前工作//BBA,CA,CD,E,FD,F持续时间(天)42335635解:(1)关键线路为:B→C→F→H双代号网络图:(2)时间参数计算工作i-j持续时间Di-j最早开始时间ESi-j最早完成时间EFi-j①②③④=③+②A(1-3)4ES1-3=0EF1-3=ES1-3+D1-3=4B(1-2)2ES1-2=EF1-2=0EF1-2=ES1-2+D1-2=2C(2-4)3ES3-4=EF1-2=2EF2-4=ES3-4+D3-4=5D(2-7)3ES2-7=EF1-2=2EF2-7=ES2-7+D2-7=5E(4-6)5ES4-6=max(EF1-3,EF2-4)=5EF4-6=ES4-6+D4-6=10F(3-5)6ES3-5=max(EF1-3,EF2-4)=5EF3-5=ES3-5+D3-5=11G(6-8)3ES6-8=max(EF3-5,EF4-6,EF2-7)=11EF6-8=ES6-8+D6-8=14H(7-8)5ES7-8=max(EF2-7,EF3-5)=11EF7-8=ES7-8+D7-8=16工作i-j持续时间Di-j最迟完成时间LFi-j=min(LSj-k)最迟开始时间LSi-j=LFi-j-Di-j总时差TFi-j==LSi-j-ESi-j自由时差FFi-j=ESi-k-EFi-j①②⑤⑥=⑤-②⑦=⑥-③⑧A(1-3)45111B(1-2)22000C(2-4)35200D(2-7)311866E(4-6)513831F(3-5)611500G(6-8)3161322H(7-8)5161100图1初始网络计7.1(即直接费率箭线下第一位数字表示正常工期,双括号内数字表示该工作的最短工期,如要求工期12图1初始网络计解:E工期缩短1天变为5天,G工期缩短两天变为1天,D工期缩短一天变为3天。1512A→E→G。A可以112的赶工费率最低应将其能够用51天。13D工2E工作工3天。此时有两条关键线路:A→E→G、A→D→F,工期为12天。8.11000元天,并对其进行工期费用优化,为找出费用最小下的最优工期。表1工期及费用调整表工作ABCDEFGHI紧前工作-AACBCDE、FG、H工时正常8410263473赶工636252344直接费用正常40002000600050050003000100080005000赶工500028006600500520032001700116005800解:工时正常的双代号网络图:由已知可得直接费率qi-j见下表,关键线路由1-2-4-6-8-9-10组成,计算工期为31天直接费率表工作直接费率qi-j工作直接费率qi-j1-25004-62002-38007-97002-41506-812004-7——9-108003-5200计算项目初始总费用,也就是正常工期下的总费用:C0=直接费用+间接费用=(4000+2000+6000+500+5000+3000+1000+8000+5000)+1000*31=655001-2-4-6-8-9-10C为优先压缩对象,150,且(q-p)=150-1000850<0C可作为优先被压缩对象。由表1C4C10-4=6(天)。重新计算,此时总工281-2-3-5-6-8-9-10。E,且(q-p)<0,EE最多1E527天,关键线路为1-2-3-5-6-8-9-10和1-2-4-6-8-9-10第三步:此时注意到两条关键线路应同时缩短。最优方案是在关键工作A上缩短2天,I工作缩短1天,即新工时分别为8-2=6(天),3-1=2天重新计算,此时总工期为24天。计算过程工作名称可缩短天数(d)实际缩短天数(d)总直接费用(元)总间接费用(元)总成本(元)总工期(d)0///345003100065500311(2-4)44351002800063100282(3-5)11353002700062300273(1-2)22363002500061300254(9-10)11371002400061100245(6-8)3340700210006170021由上表可最低成本日程为24天,总成本61100。9.2(单位:天),第二个数字为完成该工作每天所需劳动力数,由此计算各道工作进度应如何安排才能使劳力资源均衡使用。图2工作时间及员工需求网络图解:(1)首先,计算出工期为10周。其次,根据数据可算出完成此工程需要周数为:i=77工作周,其中(x人数λ=1∑λ=(2x3+3x4+2x5+3x4+3x3+2x4+4x3+2x4)/10=77/10=7.7(人)T i(2)根据网络图及时间参数作出初始进度计划,即把每道工作的开工时间都定在最在双横线单横线”虚线工作每周所需劳力数绘制初始进度计划如表。初始进度横道表12345678910(周)A5B3C4D3E4F3G4H4劳动人数88111111677443、4、5、69、10周劳力资源需求不足。首先H9D5周初,得到新的横道图如下。调整后的进度横道表11532345678910(周)ABCDEF4343GH劳动人448 8 8 8 6 6 6 8 8数从调整后的进度计划表可以求得𝜆

1𝑇=∑2=∑

(𝜆

2−𝜆)为2.01,此修订的进度计划在资源利用上有较好的均衡性。

𝜎 𝑇

𝑡=1 𝑡10.323d内完成60d完成的概率;如果要求完成计划的概率达到95%,则指令工期应规定为多少天?图3图3施工网络计划解:(1)根据

D1

a2mb2m

a4mb2 3 3 6可计算出各工作的期望持续时间,a=7;b=7;c=10.5;d=10;e=7,f=20;g=20;h=5,i=5;j=13关键线路有2条为:1-3-4-5-6-7-8-9;1-3-4-5-7-8-9,根据式σ2=1[(

a+4m+b-a+2m

2+

a+4m+b-2m+b

2]=(

b-a22 6 3 6 3 6a b c de f g h i j可计算出各工作的期望持续时间的方差,σ2=0;σ2=0.11;σ2=1.37;σ2=0.25;σ2=0.11;σ2=4;σ2=1;σ2=0.25;σ2=0.25;σ2=14.7。a b c de f g h i j关键线路Ⅰ:期望工期=10+10+20+5+13=58天。期望工期的方差=1.37+0.25+1+0.25+14.7=17.57关键线路Ⅱ:期望工期=10+10+20+5+13=58天

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论