2023年河北省保定市满城县九年级数学第一学期期末达标测试试题含解析_第1页
2023年河北省保定市满城县九年级数学第一学期期末达标测试试题含解析_第2页
2023年河北省保定市满城县九年级数学第一学期期末达标测试试题含解析_第3页
2023年河北省保定市满城县九年级数学第一学期期末达标测试试题含解析_第4页
2023年河北省保定市满城县九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河北省保定市满城县九年级数学第一学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交 B.外切 C.内切 D.内含2.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:43.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=04.已知(x2+y2)(x2+y2-1)-6=0,则x2+y2的值是()A.3或-2 B.-3或2 C.3 D.-25.如图所示,不能保证△ACD∽△ABC的条件是()A.AB:BC=AC:CD B.CD:AD=BC:AC C.CD2=ADDC D.AC2=ABAD6.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为()A.-8 B.-6 C.-4 D.-27.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变8.如图,是的弦,半径于点且则的长为().A. B. C. D.9.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.10.将抛物线向右平移一个单位,向上平移2个单位得到抛物线A. B. C. D.二、填空题(每小题3分,共24分)11.已知是,则的值等于____________.12.如图所示,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得,则点的坐标为_________.13.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.14.若是方程的一个根.则的值是________.15.一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.16.若圆锥的底面圆半径为,圆锥的母线长为,则圆锥的侧面积为______.17.在平面直角坐标系中,点与点关于原点对称,则__________.18.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.三、解答题(共66分)19.(10分)(1)计算:(2)已知,求的值20.(6分)我县从2017年底开始落实国家的脱贫攻坚任务,准备加大基础设施的投入力度,某乡镇从2017年底的100万到2019年底的196万元,用于基础建设以落实国家大政方针.设平均每年所投入的增长率相同.(1)求2017年底至2019年底该乡镇的年平均基础设施投入增长率?(2)按照这一投入力度,预计2020年该乡镇将投入多少万元?21.(6分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.22.(8分)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.23.(8分)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为,第n个方程为;(2)直接写出第n个方程的解,并检验此解是否正确.24.(8分)解方程:(1)解方程:;(2).25.(10分)解下列方程:(1)(2)26.(10分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.

参考答案一、选择题(每小题3分,共30分)1、C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm和3cm,圆心距为3.5cm,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C.【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.2、C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3(两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.3、B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B.4、C【分析】设m=x2+y2,则有,求出m的值,结合x2+y20,即可得到答案.【详解】解:根据题意,设m=x2+y2,∴原方程可化为:,∴,解得:或;∵,∴,∴;故选:C.【点睛】本题考查了换元法求一元二次方程,解题的关键是熟练掌握解一元二次方程的方法和步骤.5、D【分析】对应边成比例,且对应角相等,是证明三角形相似的一种方法.△ACD和△ABC有个公共的∠A,只需要再证明对应边成比例即满足相似,否则就不是相似.【详解】解:图中有个∠A是公共角,只需要证明对应边成比例即可,△ACD中三条边AC、AD、DC分别对应的△ABC中的AB、AC、BC.A、B、C都满足对应边成比例,只有D选项不符合.故本题答案选择D【点睛】掌握相似三角形的判定是解决本题的关键.6、C【分析】连接OB,过点B作轴于点D,过点C作于点E,证,再利用三角形的面积求解即可.【详解】解:连接OB,过点B作轴于点D,过点C作于点E,∵点P是BC的中点∴PC=PB∵∴∴∵∴∵点在双曲线上∴∴∴∴∵点在双曲线上∴∴.故选:C.【点睛】本题考查的知识点是反比例函数的图象与性质、平行四边形的性质、全等三角形的判定与性质、三角形的面积公式等,掌握以上知识点是解此题的关键.7、B【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为1,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[1×39+(90-90)2]÷40<1,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.8、D【解析】连接OA,∵OC⊥AB,AB=6则AD=3且OA2=OD2+AD2,∴OA2=16+9,∴OA=OC=5cm.∴DC=OC-OD=1cm故选D.9、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.10、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向右平移一个单位所得直线解析式为:;再向上平移2个单位为:,即.故选B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】已知等式左边通分并利用同分母分式的减法法则计算,整理得到a-b与ab的关系,代入原式计算即可求出值.【详解】解:∵,∴则,

故对答案为:.【点睛】此题考查了分式的加减法,以及分式的值,熟练掌握运算法则是解本题的关键.12、【分析】把点A绕点O顺时针旋转90°得到点A′,看其坐标即可.【详解】解:由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,由图中可以看出,点A′的坐标为(1,3),

故答案为A′(1,3).【点睛】本题考查点的旋转坐标的求法;得到关键点旋转后的位置是解题的关键.13、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.14、【解析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】∵x=2是方程x²-3x+q=0的一个根,

∴x=2满足该方程,

∴2²-3×2+q=0,

解得,q=2.

故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.15、1【解析】先根据数据的众数确定出x的值,即可得出结论.【详解】∵一组数据:﹣1,1,2,x,5,它有唯一的众数是1,∴x=1,∴此组数据为﹣1,2,1,1,5,∴这组数据的中位数为1.故答案为1.【点睛】本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.16、【分析】根据圆锥的侧面积公式:S侧=代入数据计算即可.【详解】解:圆锥的侧面积=.故答案为:【点睛】本题考查了圆锥的侧面积公式,属于基础题型,熟练掌握计算公式是解题关键.17、1【分析】根据在平面直角坐标系中的点关于原点对称的点的坐标为,进而求解.【详解】∵点与点关于原点对称,∴,故答案为:1.【点睛】本题考查平面直角坐标系中关于原点对称点的特征,即两个点关于原点对称时,它们的坐标符号相反.18、1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.三、解答题(共66分)19、(1)1;(2).【分析】(1)先计算乘方并对平方根化简,最后进行加减运算即可;(2)用含b的代数式表示a,代入式子即可求值.【详解】解:(1)==1(2)已知,可得,代入=.【点睛】本题考查实数的运算以及代入求值,熟练掌握相关计算法则是解题关键.20、(1)年平均增长率为40%;(2)预计2020年该乡镇将投入274.4万元.【分析】(1)设年平均增长率为x,根据题意列出方程,解方程即可得出答案;(2)用2019年的196万元×(1+年增长率)即可得出答案.【详解】(1)设年平均增长率为x,由题意得解得:=40%,(舍)∴年平均增长率为40%;(2)196(1+40%)=274.4(万元)答:2017年底至2019年底该乡镇的年平均基础设施投入增长为40%,预计2020年该乡镇将投入274.4万元.【点睛】本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.21、(1)或;(2)C点坐标为:(0,3),D(2,-1);(3)P(,0).【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可.(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案.【详解】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入得:,解得:m=±1.∴二次函数的解析式为:或.(2)∵m=2,∴二次函数为:.∴抛物线的顶点为:D(2,-1).当x=0时,y=3,∴C点坐标为:(0,3).(3)存在,当P、C、D共线时PC+PD最短.过点D作DE⊥y轴于点E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短时,P点的坐标为:P(,0).22、(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)点P的坐标为P(﹣1,4)或(﹣1,).【分析】(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,即可求解;(2)分∠MAO=45°,∠M′AO=45°两种情况,分别求解即可;(3)分当BD是矩形的边,BD是矩形的边两种情况,分别求解即可.【详解】(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,故点A、B的坐标分别为:(﹣3,0),(1,0);(2)抛物线的表达式为:y=(x+3)(x﹣1)①,当∠MAO=45°时,如图所示,则直线AM的表达式为:y=x②,联立①②并解得:m=x=4或﹣3(舍去﹣3),故点M(4,7);②∠M′AO=45°时,同理可得:点M(﹣2,﹣1);故:﹣2≤m≤4;(3)①当BD是矩形的对角线时,如图2所示,过点Q作x轴的平行线EF,过点B作BE⊥EF,过点D作DF⊥EF,抛物线的表达式为:y=ax2+2ax﹣3a,函数的对称轴为:x=1,抛物线点A、B的坐标分别为:(﹣3,0)、(1,0),则点P的横坐标为:1,OB=1,而CD=4BC,则点D的横坐标为:﹣4,故点D(﹣4,5a),即HD=5a,线段BD的中点K的横坐标为:,则点Q的横坐标为:﹣2,则点Q(﹣2,﹣3a),则HF=BE=3a,∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,∴∠QBE=∠DQF,∴△DFQ∽△QEB,则,,解得:a=(舍去负值),同理△PGB≌△DFQ(AAS),∴PG=DF=8a=4,故点P(﹣1,4);②如图3,当BD是矩形的边时,作DI⊥x轴,QN⊥x轴,过点P作PL⊥DI于点L,同理△PLD≌△BNQ(AAS),∴BN=PL=3,∴点Q的横坐标为4,则点Q(4,21a),则QN=DL=21a,同理△PLD∽△DIB,∴,即,解得:a=(舍去负值),LI=26a=,故点P(﹣1,);综上,点P的坐标为:P(﹣1,4)或(﹣1,).【点睛】本题主要考查的是二次函数综合运用,涉及到矩形的性质、图形的全等和相似等,其中(2)、(3),要注意分类求解,避免遗漏.23、(1)9,2n+1;(2)2n+1,见解析【分析】(1)观察一系列等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论