版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年广东外语外贸大附设外语学校数学九上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.82.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.如图,等边△ABC中,点D、E、F分别是AB、AC、BC中点,点M在CB的延长线上,△DMN为等边三角形,且EN经过F点.下列结论:①EN=MF②MB=FN③MP·DP=NP·FP④MB·BP=PF·FC,正确的结论有()A.1个 B.2个 C.3个 D.4个4.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.45.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.6.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.7.正八边形的中心角为()A.45° B.60° C.80° D.90°8.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧AB的中点,连接AC、BC,则图中阴影部分面积是()A. B.C. D.9.二次函数与的图象与x轴有交点,则k的取值范围是A. B.且 C. D.且10.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A. B. C. D.11.下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=012.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25π B.65π C.90π D.130π二、填空题(每题4分,共24分)13.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.14.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB=4,则阴影部分的面积是______.15.在△ABC中,∠C=90°,BC=2,,则边AC的长是.16.若某人沿坡度i=3∶4的斜坡前进10m,则他比原来的位置升高了_________m.17.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,以此类推,为了投资少而获利大,每个遮阳伞每天应提高_______________。18.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________三、解答题(共78分)19.(8分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C(1)求抛物线的表达式;(2)在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的坐标;(3)在y轴上是否存在一点Q,使得△QAM为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由.20.(8分)已知如图所示,A,B,C是⊙O上三点,∠AOB=120°,C是的中点,试判断四边形OACB形状,并说明理由.21.(8分)如图,已知反比例函数与一次函数的图象相交于点A、点D,且点A的横坐标为1,点D的纵坐标为-1,过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数y=ax+b的图像与x轴交于点C,求∠ACO的度数.(3)结合图像直接写出,当时,x的取值范围.22.(10分)已知抛物线C1的解析式为y=-x2+bx+c,C1经过A(-2,5)、B(1,2)两点.(1)求b、c的值;(2)若一条抛物线与抛物线C1都经过A、B两点,且开口方向相同,称两抛物线是“兄弟抛物线”,请直接写出C1的一条“兄弟抛物线”的解析式.23.(10分)在如图的小正方形网格中,每个小正方形的边长均为,格点(顶点是网格线的交点)的三个顶点坐标分别是,以为位似中心在网格内画出的位似图△A1B1C1,使与的相似比为,并计算出的面积.24.(10分)关于的一元二次方程的两个实数根分别为,.(1)求的取值范围;(2)若,求的值.25.(12分)综合与实践问题背景:综合与实践课上,同学们以两个全等的三角形纸片为操作对象,进行相一次相关问题的研究.下面是创新小组在操作过程中研究的问题,如图一,△ABC≌△DEF,其中∠ACB=90°,BC=2,∠A=30°.操作与发现:(1)如图二,创新小组将两张三角形纸片按如图示的方式放置,四边形ACBF的形状是,CF=;(2)创新小组在图二的基础上,将△DEF纸片沿AB方向平移至图三的位置,其中点E与AB的中点重合.连接CE,BF.四边形BCEF的形状是,CF=.操作与探究:(3)创新小组在图三的基础上又进行了探究,将△DEF纸片绕点E逆时针旋转至DE与BC平行的位置,如图四所示,连接AF,BF.经过观察和推理后发现四边形ACBF也是矩形,请你证明这个结论.26.如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据垂径定理,构造直角三角形,连接OC,在RT△OCE中应用勾股定理即可.【详解】试题解析:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故选B.2、C【分析】直接利用配方法进而将原式变形得出答案.【详解】y=x2-8x-9=x2-8x+16-1=(x-4)2-1.故选C.【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.3、C【分析】①连接DE、DF,根据等边三角形的性质得到∠MDF=∠NDE,证明△DMF≌△DNE,根据全等三角形的性质证明;②根据①的结论结合点D、E、F分别是AB、AC、BC中点,即可得证;③根据题目中的条件易证得,即可得证;④根据题目中的条件易证得,再则等量代换,即可得证.【详解】连接,
∵和为等边三角形,
∴,,
∵点分别为边的中点,
∴是等边三角形,∴,,
∵∴,
在和中,,
∴,
∴,故①正确;∵点分别为等边三角形三边的中点,
∴四边形为菱形,∴,∵,∴,故②正确;∵点分别为等边三角形三边的中点,∴∥,∴,∵为等边三角形,∴,又∵,∴,∴,∴,故③错误;∵点分别为等边三角形三边的中点,∴∥,,∴,∴,由②得,∴,∴,故④正确;综上:①②④共3个正确.故选:C【点睛】本题考查的是等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理结合等量代换是解题的关键.4、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的5、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°
∠BDO+∠BEO=180°
∴B、D、O、E四点共圆
∴∠DOE=180°−∠B=180°−50°=130°
又∵∠DFE是圆周角,∠DOE是圆心角
∠DFE=∠DOE=65°
故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.6、B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.7、A【分析】根据中心角是正多边形的外接圆相邻的两个半径的夹角,即可求解.【详解】∵360°÷8=45°,∴正八边形的中心角为45°,故选:A.【点睛】本题主要考查正八边形的中心角的定义,理解正八边形的外接圆相邻的两个半径的夹角是中心角,是解题的关键.8、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2=,所以阴影部分面积是扇形面积减去四边形面积即.故选A.9、D【解析】利用△=b2-4ac≥1,且二次项系数不等于1求出k的取值范围.【详解】∵二次函数与y=kx2-8x+8的图象与x轴有交点,∴△=b2-4ac=64-32k≥1,k≠1,解得:k≤2且k≠1.故选D.【点睛】此题主要考查了抛物线与x轴的交点,熟练掌握一元二次方程根的判别式与根的关系是解题关键.10、B【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.11、C【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【详解】A.△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B.△=32﹣4×3<0,方程没有实数解,所以B选项错误;C.方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D.方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.12、B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.二、填空题(每题4分,共24分)13、【解析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为.14、【分析】作辅助线证明△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,利用等边三角形面积公式S=即可解题.【详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC是等边三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,∵AB=4,即OA=OD=OE=OB=2,易证阴影部分面积=S△CDE==.【点睛】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.15、.【详解】解:∵BC=2,∴AB==3∴AC=故答案为:.16、1.【详解】解:如图:由题意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案为:1【点睛】本题考查解直角三角形的应用-坡度坡角问题.17、4元或6元【分析】设每个遮阳伞每天应提高x元,每天获得利润为S,每个每天应收费(10+x)元,每天的租出量为(100-×10=100-5x)个,由此列出函数解析式即可解答.【详解】解:设每个遮阳伞每天应提高x元,每天获得利润为S,由此可得,
S=(10+x)(100-×10),
整理得S=-5x2+50x+1000,
=-5(x-5)2+1125,
因为每天提高2元,则减少10个,所以当提高4元或6元的时候,获利最大,
又因为为了投资少而获利大,因此应提高6元;
故答案为:4元或6元.【点睛】此题考查运用每天的利润=每个每天收费×每天的租出量列出函数解析式,进一步利用题目中实际条件解决问题.18、(30-2x)(20-x)=6×1.【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.三、解答题(共78分)19、(1)y=﹣x2+2x+3;(2)点P的坐标为:(2,3);(3)存在,点Q的坐标为:(0,1)或(0,3)或(0,)或(0,﹣)【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)过点M作直线m∥AC,在AC下方作等距离的直线n,直线n与抛物线交点即为点P,即可求解;(3)分AM时斜边、AQ是斜边、MQ是斜边三种情况,分别求解即可.【详解】解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点M作直线m∥AC,直线m与抛物线交点即为点P,设直线m的表达式为:y=﹣x+b,点M(1,4),则直线m的表达式为:y=﹣x+5,联立方程组,解得:x=1(舍去)或2;故点P的坐标为:(2,3);(3)设点Q的坐标为:(0,m),而点A、M的坐标分别为:(3,0)、(1,4);则AM2=20,AQ2=9+m2,MQ2=(m﹣4)2+1=m2﹣8m+17;当AM时斜边时,则20=9+m2+m2﹣8m+17,解得:m=1或3;当AQ是斜边时,则9+m2=20+m2﹣8m+17,解得m=;当MQ是斜边时,则m2﹣8m+17=20+9+m2,解得m=﹣,综上,点Q的坐标为:(0,1)或(0,3)或(0,)或(0,﹣)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、勾股定理的运用等,其中(3),要注意分类求解,避免遗漏.20、AOBC是菱形,理由见解析.【分析】连接OC,根据等边三角形的判定及圆周角定理进行分析即可.【详解】AOBC是菱形,理由如下:连接OC,∵C是的中点∴∠AOC=∠BOC=×120°=60°,∵CO=BO(⊙O的半径),∴△OBC是等边三角形,∴OB=BC,同理△OCA是等边三角形,∴OA=AC,又∵OA=OB,∴OA=AC=BC=BO,∴AOBC是菱形.【点睛】本题利用了等边三角形的判定和性质,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21、(1),;(2)∠ACO=45°;(3)0<<1,<-2【分析】(1)由△AOB的面积为1,点A的横坐标为1,求点A的纵坐标,确定反比例函数解析式,利用反比例函数解析式求D点坐标,利用“两点法”求一次函数解析式;
(2)由一次函数解析式求C点坐标,再求AB、BC,在Rt△ABC中,求tan∠ACO的值,再求∠ACO的度数;
(3)当y1>y2时,y1的图象在y2的上面,由此求出x的取值范围.【详解】解(1)如图:S∆AOB=1,则则反比例函数的解析式:∴A(1,2),D(-2,-1)设一次函数的解析式为,则,解得:.∴一次函数的解析式为:(2)由直线y=x+1可知,C(-1,0),
则BC=OB+OC=2,AB=2,
所以,在Rt△ABC中,tan∠ACO==1,
故∠ACO=45°;
(3)由图象可知,当y1>y2时,x<-2或0<x<1.【点睛】此题考查反比例函数与一次函数的交点问题.解题关键是由已知条件求交点坐标,根据交点坐标求反比例函数、一次函数的解析式,利用解析式,形数结合解答题目的问题.22、(1)b=-2,c=5;(2)(答案不唯一).【分析】(1)直接把点代入,求出的值即可得出抛物线的解析式;(2)根据题意,设“兄弟抛物线”的解析式为:,直接把点代入即可求得答案.【详解】(1)∵在C1上,∴,解得:.(2)根据“兄弟抛物线”的定义,知:“兄弟抛物线”经过A(-2,5)、B(1,2)两点,且开口方向相同,∴设“兄弟抛物线”的解析式为:,∵在“兄弟抛物线”上,∴,解得:.∴另一条“兄弟抛物线”的解析式为:.【点睛】本题主要考查了待定系数法求二次函数,正确理解题意,明确“兄弟抛物线”的定义是解题的关键.23、画图见解析,的面积为1.【分析】先找出各顶点的对应顶点A1、B1、C1,然后用线段顺次连接即可得到,用割补法可以求出的面积.【详解】如图所示:,即为所求,的面积为:.【点睛】本题考查了作图-位似变换:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.24、(1);(2)m=-1.【分析】(1)根据一元二次方程有两个实数根可得:△≥0,列出不等式即可求出的取值范围;(2)根据根与系数的关系,分别表示出和,然后代入已知等式即可求出m的值.【详解】(1)解:由题可知:解出:(2)解:由根与系数的关系得:,又∵∴解出:【点睛】此题考查的是求一元二次方程的参数的取值范围和参数的值,掌握一元二次方程根的情况与△的关系和根与系数的关系是解决此题的关键.25、(1)矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年信用贷款合同格式2篇
- 2024年度生物医药临床试验合同2篇
- 全新2024年长途巴士租赁合同3篇
- 2024年版船舶租赁协议2篇
- 二零二四年度演艺活动组织与承办合同3篇
- 2024年出行伴侣:短期汽车租赁协议2篇
- 二零二四年度承包合同标的为农田种植的承包协议2篇
- 含2024年新条款的兼职工作合同3篇
- 2024年企业人力资源外包服务合同2篇
- 2024年服务订阅认购协议3篇
- 股东会同意借款决议范本专业版
- 《南州六月荔枝丹》学习要点
- 软件工程实验报告_学生成绩管理系统
- 卫生部心血管疾病介入诊疗技术培训教材
- 九年义务教育全日制小学音乐教学器材配备目录
- 员工自我评价表
- MSDS(10-100048)聚脂烤漆
- 船舶风险辩识、评估及管控须知
- 减资专项审计报告
- 投标流程及管理制度
- 机场现场指挥培训副本ppt课件
评论
0/150
提交评论