2023年安徽省合肥市瑶海区部分学校数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2023年安徽省合肥市瑶海区部分学校数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2023年安徽省合肥市瑶海区部分学校数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2023年安徽省合肥市瑶海区部分学校数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2023年安徽省合肥市瑶海区部分学校数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年安徽省合肥市瑶海区部分学校数学九年级第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若,则代数式的值()A.-1 B.3 C.-1或3 D.1或-32.下列式子中表示是的反比例函数的是()A. B. C. D.3.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.4.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2) B.(4,3) C.(6,2) D.(6,3)5.如图,四边形内接于,为直径,,过点作于点,连接交于点.若,,则的长为()A.8 B.10 C.12 D.166.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°7.方程的根为()A. B. C.或 D.或8.如图所示,给出下列条件:①;②;③;④,其中单独能够判定的个数为()A. B. C. D.9.下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.10.如图,一段抛物线,记为抛物线,它与轴交于点;将抛物线绕点旋转得抛物线,交轴于点;将抛物线绕点旋转得抛物线,交轴于点.···如此进行下去,得到一条“波浪线”,若点在此“波浪线”上,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.12.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.13.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).14.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.15.如图,请补充一个条件_________:,使△ACB∽△ADE.16.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.17.某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是_______.18.一元二次方程的解为________.三、解答题(共66分)19.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.20.(6分)如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.21.(6分)小王、小张和小梅打算各自随机选择本周六的上午或下午去高邮湖的湖上花海去踏青郊游.(1)小王和小张都在本周六上午去踏青郊游的概率为_______;(2)求他们三人在同一个半天去踏青郊游的概率.22.(8分)在正方形中,点是边上一点,连接.图1图2(1)如图1,点为的中点,连接.已知,,求的长;(2)如图2,过点作的垂线交于点,交的延长线于点,点为对角线的中点,连接并延长交于点,求证:.23.(8分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求的值;(2)求出小王一次拨对小李手机号的概率.24.(8分)如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为;点的坐标为;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一点,的面积恰好等于正方形的面积,求点的坐标.25.(10分)如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.26.(10分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用换元法解方程即可.【详解】设=x,原方程变为:,解得x=3或-1,∵≥0,∴故选B.【点睛】本题考查了用换元法解一元二次方程,设=x,把原方程转化为是解题的关键.2、D【解析】根据反比例函数的定义逐项分析即可.【详解】A.是一次函数,故不符合题意;B.二次函数,故不符合题意;C.不是反比例函数,故不符合题意;D.是反比例函数,符合题意;故选D.【点睛】本题考查了反比例函数的定义,一般地,形如(k为常数,k≠0)的函数叫做反比例函数.3、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.4、B【分析】根据点A的坐标变化可以得出线段AB是向右平移一个单位长度,向上平移一个单位长度,然后即可得出点B'坐标.【详解】∵点A(1,0)平移后得到点A'(2,1),∴向右平移了一个单位长度,向上平移了一个单位长度,∴点B(3,2)平移后的对应点B'坐标为(4,3).故选:B.【点睛】本题主要考查了直角坐标系中线段的平移,熟练掌握相关方法是解题关键.5、C【解析】连接,如图,先利用圆周角定理证明得到,再根据正弦的定义计算出,则,,接着证明,利用相似比得到,所以,然后在中利用正弦定义计算出的长.【详解】连接,如图,∵为直径,∴,∵,∴,而,∴,∵,∴,而,∴,∴,∴,在中,∵,∴,∴,,∵,,∴,∴,即,∴,∴,在中,∵,∴,故选C.【点睛】本题考查了圆周角定理,解直角三角形,熟练掌握“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径”是解题的关键.6、C【解析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质7、D【分析】用直接开平方法解方程即可.【详解】x-1=±1x1=2,x2=0故选:D【点睛】本题考查的是用直接开平方法解一元二次方程,关键是要掌握开平方的方法,解题时要注意符号.8、B【解析】由已知△ABC与△ABD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】解::①∵,∠A为公共角,∴;②∵,∠A为公共角,∴;③虽然,但∠A不是已知的比例线段的夹角,所以两个三角形不相似;④∵,∴,又∵∠A为公共角,∴.综上,单独能够判定的个数有3个,故选B.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.9、C【解析】分析:根据同旁内角的定义进行分析判断即可.详解:A选项中,∠1与∠2是同位角,故此选项不符合题意;B选项中,∠1与∠2是内错角,故此选项不符合题意;C选项中,∠1与∠2是同旁内角,故此选项符合题意;D选项中,∠1与∠2不是同旁内角,故此选项不符合题意.故选C.点睛:熟知“同旁内角的定义:在两直线被第三直线所截形成的8个角中,夹在被截两直线之间,且位于截线的同侧的两个角叫做同旁内角”是解答本题的关键.10、D【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【详解】∵一段抛物线:,∴图象与x轴交点坐标为:(0,0),(6,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得Cn.∴Cn的与x轴的交点横坐标为(6n,0),(6n+3,0),∴在C337,且图象在x轴上方,∴C337的解析式为:,当时,.即,故答案为D.【点睛】此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.二、填空题(每小题3分,共24分)11、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.12、140°.【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.13、300+100【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题.【详解】作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=300(米),∴BC=BE+EC=300+100(米);故答案为:300+100.【点睛】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题14、.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.15、∠ADE=∠C或∠AED=∠B或【分析】由∠A是公共角,且DE与BC不平行,可得当∠ADE=∠C或∠AED=∠B或时,△ADE∽△ACB.【详解】①补充∠ADE=∠C,理由是:∵∠A是公共角,∠ADE=∠C,

∴△ADE∽△ACB.故答案为:∠ADE=∠C.②补充∠AED=∠B,理由是:∵A是公共角,∠AED=∠B,

∴△ADE∽△ACB.

③补充,理由是:∵∠A是公共角,,

∴△ADE∽△ACB.故答案为:∠ADE=∠C或∠AED=∠B或【点睛】本题考查了相似三角形的判定与性质.注意掌握判定定理的应用,注意掌握数形结合思想的应用.16、1或5【分析】分类讨论:当点P在射线OA上时,过点P作PE⊥AB于点E,根据切线的性质得到PE=1cm,利用30度角所对的直角边等于斜边一半的性质的OP=2PE=2cm,求出⊙P移动的距离为4-2-1=1cm,由此得到⊙P运动时间;当点P在射线OB上时,过点P作PF⊥AB于点F,同样方法求出运动时间.【详解】当点P在射线OA上时,如图,过点P作PE⊥AB于点E,则PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移动的距离为4-2-1=1cm,∴运动时间为s;当点P在射线OB上时,如图,过点P作PF⊥AB于点F,则PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移动的距离为4+2-1=5cm,∴运动时间为s;故答案为:1或5.【点睛】此题考查动圆问题,圆的切线的性质定理,含30度角的直角边等于斜边一半的性质,解题中注意运用分类讨论的思想解答问题.17、【分析】根据题意列举出所有情况,并得出两球颜色相同的情况,运用概率公式进行求解.【详解】解:一次摸出两个球的所有情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2)6种,其中两球颜色相同的有2种.所以得奖的概率是.故答案为:.【点睛】本题考查概率的概念和求法,熟练掌握概率的概念即概率=所求情况数与总情况数之比和求法是解题的关键.18、,【解析】利用“十字相乘法”对等式的左边进行因式分解.【详解】由原方程,得,则或,解得,.故答案为:,.【点睛】本题考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).三、解答题(共66分)19、(1)证明见解析;(2)阴影部分的面积为.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.20、(1)证明见解析;(2)CD=【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点,∴BF=AB,∴设CD=BF=x,∵△CDE∽△CBF,∴,∴,∵x>0,∴x=,即:CD=.【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质21、(1);(2).【解析】1)根据题意,画树状图列出三人随机选择上午或下午去踏青游玩的所有等可能结果,找到小王和小张都在本周六上午去游玩的结果,根据概率公式计算可得;

2)由1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【详解】解:1)根据题意,画树状图如图,

由树状图知,小王和小张出去所选择的时间段有4种等可能结果,其中都在本周六上午去踏青郊游的只有1种结果,

所以都在本周六上午去踏青郊游的概率为,

故答案为;

2)由树状图可知,三人随机选择本周日的上午或下午去踏青郊游共有8种等可能结果,

其中他们三人在同一个半天去踏青郊游的结果有上,上,上、下,下,下种,

他们三人在同一个半天去踏青郊游的概率为.

本题考查的是用列表法或树状图法求概率注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.【点睛】本题考查的是用列表法或树状图法求概率注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.22、(1);(2)证明见解析.【分析】(1)作于点,由直角三角形斜边上的中线等于斜边的一半可推出,,在中,利用三角函数求出BP,FP,在等腰三角形中,求出BE,再由勾股定理求出AB,进而得到BC和CP,再次利用勾股定理即可求出CF的长度.(2)过作垂直于点,得矩形,首先证明,得,再证明,可推出得.【详解】解:(1)中,为中线,,,.作于点,如图,中,在等腰三角形中,,由勾股定理求得,(2)过作垂直于点,得矩形,∵AB∥CD∴∠MAO=∠GCO在△AMO和△CGO中,∵∠MAO=∠GCO,AO=CO,∠AOM=∠COG∴△AMO≌△CGO(ASA)∴AM=GC∵四边形BCGP为矩形,∴GC=PB,PG=BC=AB∵AE⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE和△GPH中,∵∠AEB=∠H,∠ABE=∠GPH=90°,AB=PG∴△ABE≌△GPH(AAS)∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.【点睛】本题考查了正方形和矩形的性质,三角函数,勾股定理,以及全等三角形的判定和性质,正确作出辅助线,利用全等三角形对应边相等将线段进行转化是解题的关键.23、(1)14;(2).【分析】(1)根据题意求出11个数字之和,再根据和是20的整数倍进行求解;(2)先求出、的可能值,再根据概率公式进行求解.【详解】(1)11个数字之和为=46+=20n,∵这11个数字之和是20的整数倍,2<<18∴当n=3时,即;(2)∵、的可能值为9和5,8和6,7和7,6和8,5和9,∴小王一次拨对小李手机号码的概率【点睛】此题主要考查概率的求解,解题的关键是熟知概率公式.24、(1)5,;(2);(3)点的坐标为或【分析】(1)根据正方形及点A、B的坐标得到边长,即可求得AD,得到点C的坐标;(2)将点C的坐标代入解析式即可;(3)设点到的距离为,根据的面积恰好等于正方形的面积求出h的值,再分两种情况求得点P的坐标.【详解】(1)∵点的坐标为,点的坐标为,∴AB=2-(-3)=5,∵四边形为正方形,∴AD=AB=5,∵BC=AD=5,BC⊥y轴,∴C.故答案为:5,;把代入反比例函数得解得反比例函数的解析式为;(3)设点到的距离为.正方形的面积,的面积,解得.①当点在第二象限时,此时,点的坐标为②当点在第四象限时,此时,点的坐标为综上所述,点的坐标为或【点睛】此题考查正方形的性质,待定系数法求反比例函数的解析式,利用反比例函数求点坐标,(3)中确定点P时不要忽略反比例函数的另一个分支.25、(1);(2)9;(3)存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【分析】(1)根据抛物线经过A、B两点,带入解析式,即可求得a、b的值.(2)根据PA=PB,要求四边形PAOC的周长最小,只要P、B、C三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM为直角三角形,便可分为两种情况QM⊥BC和QM⊥BO,再结合△QBM∽△CBO,根据相似比例便可求解.【详解】解:(1)将点A(1,0),B(4,0)代入抛物线中,得:解得:所以抛物线的解析式为.(2)由(1)可知,抛物线的对称轴为直线.连接BC,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9.(3)当QM⊥BC时,易证△QBM∽△CBO所以,又因为△CQM为等腰三角形,所以QM=CM.设CM=x,则BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.过点M作NM⊥OB于N,则MN//OC,所以,即,所以,所以点M的坐标为()当QM⊥BO时,则MQ//OC,所以,即设QM=3t,则BQ=4t,又因为△CQM为等腰三角形,所以QM=CM=3t,BM=5-3t又因为QM2+QB2=BM2,所以(3t)2+(4t)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论