2023-2024学年山西省吕梁地区文水县数学九上期末教学质量检测模拟试题含解析_第1页
2023-2024学年山西省吕梁地区文水县数学九上期末教学质量检测模拟试题含解析_第2页
2023-2024学年山西省吕梁地区文水县数学九上期末教学质量检测模拟试题含解析_第3页
2023-2024学年山西省吕梁地区文水县数学九上期末教学质量检测模拟试题含解析_第4页
2023-2024学年山西省吕梁地区文水县数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山西省吕梁地区文水县数学九上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A. B. C. D.2.向阳村年的人均收入为万元,年的人均收入为万元.设年平均增长率为,根据题意,可列出方程为()A. B. C. D.3.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106° B.116° C.126° D.136°4.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.A.3 B.3.5 C.3或4 D.3或3.55.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是()A.③—④—①—② B.②—①—④—③ C.④—①—②—③ D.④—①—③—②6.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是()A.①③ B.②④ C.①③④ D.②③④7.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k≥﹣4 D.k≥48.不解方程,则一元二次方程的根的情况是()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.以上都不对9.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10.一元二次方程x2+x=0的根是()A.x1=0,x2=1 B.x1=0,x2=﹣1 C.x1=x2=0 D.x1=x2=111.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.12.如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于y轴对称D.△POQ的面积是二、填空题(每题4分,共24分)13.关于x的分式方程有增根,则m的值为__________.14.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为___________15.若边长为2的正方形内接于⊙O,则⊙O的半径是___________.16.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).17.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.18.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为______.三、解答题(共78分)19.(8分)小琴和小江参加学校举行的“经典诵读"比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片,记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.小琴诵读《论语》的概率是.请用列表法或画树状图(树形图)法求小琴和小江诵读两个不同材料的概率.20.(8分)某商场经销种高档水果,原价每千克元,连续两次降价后每千克元,若每次下降的百分率相同求每次下降的百分率21.(8分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠.各商场的优惠条件如下:甲商场优惠条件:第一台按原价收费,其余的每台优惠;乙商场优惠条件:每台优惠.设公司购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?22.(10分)一个不透明的布袋中装有4个只有颜色不同的球,其中1个黄球、1个蓝球、2个红球.(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);(2)现再将n个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为,求n的值.23.(10分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.24.(10分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.(1)(观察猜想)在图①中,;在图②中,(用含的代数式表示)(2)(类比探究)如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;(3)(问题解决)若,,,求点到的距离.25.(12分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4,EM=6,求⊙O的半径.26.在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.

参考答案一、选择题(每题4分,共48分)1、C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是.故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.2、A【分析】设年平均增长率为,根据:2017年的人均收入×1+增长率=年的人均收入,列出方程即可.【详解】设设年平均增长率为,根据题意,得:,故选:A.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.3、B【解析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.【详解】解:∵四边形ABCD是圆的内接四边形,∴∠D=180°-∠ABC=180°-64°=116°,∵点D关于的对称点在边上,∴∠D=∠AEC=116°,故答案为B.【点睛】本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.4、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【详解】解:当在直线AB左侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO-=6cm∵以的速度向右移动∴此时的运动时间为:÷2=3s;当在直线AB右侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO+=8cm∵以的速度向右移动∴此时的运动时间为:÷2=4s;综上所述:与直线在3或4秒时相切故选:C.【点睛】此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.5、B【分析】根据一天中影子的长短和方向判断即可.【详解】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案故选B【点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.6、C【解析】①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.【详解】①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.7、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论.【详解】解:∵关于x的一元二次方程x2+1x+k=0有两个相等的实数根,∴△=12﹣1k=16﹣1k=0,解得:k=1.故选:A.【点睛】本题考查了根的判别式以及解一元一次方程,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.8、C【分析】根据∆值判断根的情况【详解】解:a=2b=3c=-4∴有两个不相等的实数根故本题答案为:C【点睛】本题考查了通过根的判别式判断根的情况,注意a,b,c有符号9、C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.10、B【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可选出答案.【详解】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=−1,故选B.【点睛】本题考查了因式分解法求一元二次方程的根.11、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.12、D【分析】利用特例对A进行判断;根据反比例函数的几何意义得到S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则可对B、D进行判断;利用关于y轴对称的点的坐标特征对C进行判断.【详解】解:A、当k1=3,k2=﹣,若Q(﹣1,),P(3,),则∠POQ=90°,所以A选项错误;B、因为PQ∥x轴,则S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则=﹣,所以B选项错误;C、当k2=﹣k1时,这两个函数的图象一定关于y轴对称,所以C选项错误;D、S△POQ=S△OMQ+S△OMP=|k1|+|k2|,所以D选项正确.故选:D.【点睛】本题考查了反比例函数比例系数的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.二、填空题(每题4分,共24分)13、1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.14、1.【详解】解:∵AB⊥x轴于点B,且S△AOB=2,∴S△AOB=|k|=2,∴k=±1.∵函数在第一象限有图象,∴k=1.故答案为1.【点睛】本题考查反比例函数系数k的几何意义.15、【分析】连接OB,CO,由题意得∠BOC=90°,OC=OB,在Rt△BOC中,根据勾股定理即可求解.【详解】解:连接OB,OC,如图∵四边形ABCD是正方形且内接于⊙O∴∠BOC=90°,

∴在Rt△BOC中,利用勾股定理得:∵OC=OB,正方形边长=2∴利用勾股定理得:则∴.

∴⊙O的半径是,

故答案为:.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.16、1.2【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.17、或【解析】根据位似变换的性质计算即可.【详解】解:∵△ABC与△A'B'C'相似比为,若点C的坐标为(4,1),∴点C′的坐标为或∴点C′的坐标为或故答案为或【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18、6【分析】由AB是⊙O的直径,根据由垂径定理得出AD=AC,进而利用等边三角形的判定和性质求得答案.【详解】解:连接AD,∵⊙O的直径AB垂直于弦CD,垂足为E,∴AD=AC,∵∠B=60°,∴△ACD是等边三角形,∵AC=6,∴CD=AC=6.故答案为:6.【点睛】此题考查了垂径定理以及等边三角形数的判定与性质.注意由垂径定理得出AD=AC是关键.三、解答题(共78分)19、;【分析】(1)由题意直接根据概率公式即可求解;(2)利用列表法展示所有9种等可能性结果,再找出小琴和小江诵读两个不同材料的结果数,然后根据概率公式求解.【详解】解:小琴诵读《论语》的概率=;故答案为.方法一,列表如下小琴小江共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料)方法二,画树状图如下共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料).【点睛】本题考查列表法与树状图法即利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、每次下降的百分率为20%【分析】设每次下降的百分率为a,然后根据题意列出一元二次方程,解方程即可.【详解】解:设每次下降的百分率为a,根据题意得:50(1-a)2=32解得:a=1.8(舍去)或a=0.2=20%,答:每次下降的百分率为20%,【点睛】本题主要考查一元二次方程的应用,读懂题意,列出方程是解题的关键.21、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠;当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【分析】(1)根据“费用=每台费用台数”分别建立等式即可;(2)分别根据求解即可;(3)先列出运费与a的关系式,再根据函数的性质求出最值即可.【详解】(1)由题意得:;(或);(或)(2)设学校购买台电脑,若两家商场收费相同,则:,(或)解得即当购买台时,两家商场的收费相同;若到甲商场购买更优惠,则:解得即当购买电脑台数大于时,甲商场购买更优惠;若到乙商场购买更优惠,则:解得即当购买电脑台数小于时,乙商场购买更优惠;(3)由题意得,当取最大时,费用最小甲商场只有台取4,此时故从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【点睛】本题考查了一次函数的性质与应用,依据题意正确建立函数关系式是解题关键.22、(1);(2)1.【解析】(1)先利用树状图展示所有12种等可能的结果数,再找出两次摸出的球恰好都是红球的所占的结果数,然后根据概率公式求解;(2)根据概率公式得到,然后利用比例性质得,求解即可.【详解】解:(1)画树状图为:共有12种等可能的结果,其中两次摸出的球恰好都是红球的占2种,所以两次摸出的球恰好都是红球的概率==;(2)根据题意得,解得n=1.【点睛】本题考查的是概率问题,熟练掌握树状图法和概率公式是解题的关键.23、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,

故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.24、(1);;(2),证明见解析;(3)点到的距离为或.【分析】(1)在图①中由旋转可知,由三角形内角和可知∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,因为,∠OAP+∠PAB=∠OAB,所以∠APB=∠AOB=α;在图②中,由旋转可知,得到∠OBP+OAP=180°,通过四边形OAPB的内角和为360°,可以得到∠AOB+∠APB=180°,因此∠APB=;(2)由旋转可知≌,,,,因为,得到,即可得证;(3)当点在上方时,过点作于点,由条件可求得PA,再由可求出OH;当点在下方时,过点作于点,同理可求出OH.【详解】(1)①由三角形内角和为180°得到∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,由旋转可知,又∵∠OAP+∠PAB=∠OAB,∴∠OBP+∠PAB+∠ABO+∠AOB=180°,即∠PAB+∠ABP+∠AOB=180°,∴∠APB=∠AOB=α;②由旋转可知,∵=180°,∴∠OBP+OAP=180°,又∵∠OBP+OAP+∠AOB+∠APB=360°,∴∠AOB+∠APB=180°,∴∠APB=;(2)证明:由绕点按顺时针方向旋转得到∴≌,,,,又∵,∴∴(3)【解法1】(i)如图,当点在上方时,过点作于点由(1)知,,∵∴由(2)知,∴(ii)如图,当点在下方时,过点作于点由(1)知,,∵∴∴∴点到的距离为或.【解法2】(i)如图,当点在上方时,过点作于点,∵,,∴,∵,取的中点∴∴点,,,四点在圆上∴,且∴∴∵,,∴在中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论