版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山西省晋中学市榆次区九年级数学第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知,下列说法中,不正确的是()A. B.与方向相同C. D.2.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为(
)A.2.4m B.24m C.0.6m D.6m3.已知点都在双曲线上,且,则的取值范围是()A. B. C. D.4.若关于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>05.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A.中位数是5 B.平均数是5 C.众数是6 D.方差是66.二次函数图象如图所示,下列结论:①;②;③;④;⑤有两个相等的实数根,其中正确的有()A.1个 B.2个 C.3个 D.4个7.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称8.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<29.已知,则为()A. B. C. D.10.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A. B. C. D.11.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是()A. B. C. D.12.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为()A.5sinA B.5cosA C.5sinA二、填空题(每题4分,共24分)13.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.14.如图,平行四边形的顶点在轴正半轴上,平行于轴,直线交轴于点,,连接,反比例函数的图象经过点.已知,则的值是________.15.如图,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为__________.16.等边三角形ABC绕着它的中心,至少旋转______度才能与它本身重合17.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)18.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).三、解答题(共78分)19.(8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.20.(8分)如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.(1)求直线和反比例函数的解析式;(2)直线经过点吗?请说明理由;(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.22.(10分)在“美丽乡村”建设中,某村施工人员想利用如图所示的直角墙角,计划再用30米长的篱笆围成一个矩形花园,要求把位于图中点处的一颗景观树圈在花园内,且景观树与篱笆的距离不小2米.已知点到墙体、的距离分别是8米、16米,如果、所在两面墙体均足够长,求符合要求的矩形花园面积的最大值.23.(10分)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.24.(10分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.25.(12分)定义:已知点是三角形边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点叫做该三角形的等距点.(1)如图1:中,,,,在斜边上,且点是的等距点,试求的长;(2)如图2,中,,点在边上,,为中点,且.①求证:的外接圆圆心是的等距点;②求的值.26.如图,在中,是高.矩形的顶点、分别在边、上,在边上,,,.求矩形的面积.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A.【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.2、D【解析】试题解析:作AN⊥EF于N,交BC于M,
∵BC∥EF,
∴AM⊥BC于M,
∴△ABC∽△AEF,
∴,
∵AM=0.6,AN=30,BC=0.12,
∴EF==6m.
故选D.3、D【分析】分别将A,B两点代入双曲线解析式,表示出和,然后根据列出不等式,求出m的取值范围.【详解】解:将A(-1,y1),B(2,y2)两点分别代入双曲线,得,,∵y1>y2,,解得,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.4、B【解析】根据一元二次方程定义,首先要求的二次项系数不为零,再根据已知条件,方程有两个不相等的实数根,令根的判别式大于零即可.【详解】解:由题意得,解得,;且,即,解得.综上所述,且.【点睛】本题主要考查一元二次方程的定义和根的判别式,理解掌握定义,熟练运用根的判别式是解答关键.5、C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C.【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.6、D【分析】根据图象与x轴有两个交点可判定①;根据对称轴为可判定②;根据开口方向、对称轴和与y轴的交点可判定③;根据当时以及对称轴为可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x轴有两个交点可得,此结论正确;②对称轴为,即,整理可得,此结论正确;③抛物线开口向下,故,所以,抛物线与y轴的交点在y轴的正半轴,所以,故,此结论错误;④当时,对称轴为,所以当时,即,此结论正确;⑤当时,只对应一个x的值,即有两个相等的实数根,此结论正确;综上所述,正确的有4个,故选:D.【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.7、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.8、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9、D【分析】由题意先根据已知条件得出a=b,再代入要求的式子进行计算即可得出答案.【详解】解:∵,∴a=b,∴==.故选:D.【点睛】本题考查比例的性质和代数式求值,熟练掌握比例的性质是解题的关键.10、C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故选C.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.11、C【分析】根据相似三角形的判定定理求出△ABP∽△PCD,再根据相似三角形对应边的比等于相似比的平方解答.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∵AB=BC=3,BP=1,∴PC=2,∴,∴CD=,故选C.【点睛】本题考查了等边三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.12、C【解析】根据三角函数即可解答.【详解】解:已知在Rt△ABC中,∠C=90°,BC=5,故BCAB=sinA故AB=5sinA【点睛】本题考查正弦函数,掌握公式是解题关键.二、填空题(每题4分,共24分)13、1.【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,1,1,1,1,3中,1出现3次,出现的次数最多,∴这组数据的众数是1,故答案为:1.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.14、1【分析】设D点坐标为(m,n),则AB=CD=m,由平行四边形的性质可得出∠BAC=∠CEO,结合∠BCA=∠COE=90°,即可证出△ABC∽△ECO,根据相似三角形的性质可得出BC•EC=AB•CO=mn,再根据S△BCE=3,即可求出k=1,此题得解.【详解】解:设D点坐标为(m,n),则AB=CD=m,∵CD平行于x轴,AB∥CD,∴∠BAC=∠CEO.∵BC⊥AC,∠COE=90°,∴∠BCA=∠COE=90°,∴△ABC∽△ECO,∴AB:CE=BC:CO,∴∴BC•EC=AB•CO=mn.∵反比例函数y=kx(x>0)的图象经过点D,∴k=mn=BC•EC=2S△BCE=1.故答案为:1.【点睛】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质以及相似三角形的判定与性质,由△ABC∽△ECO得出k=mn=BC•EC是解题的关键.15、1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【详解】解:如图:作OE⊥AB于E,交CD于F,连接OA,OC∵AB=60cm,OE⊥AB,且直径为100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案为:1.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.16、120【分析】根据等边三角形的性质,结合图形可以知道旋转角度应该等于120°.【详解】解:等边△ABC绕着它的中心,至少旋转120度能与其本身重合.【点睛】本题考查旋转对称图形及等边三角形的性质.17、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;18、①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.【详解】∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y2=(x﹣3)2+n交于点A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;∵抛物线y1=a(x+2)2+m过原点和点A(1,3),∴,解得,∴.令y1=3,则,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,则(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y轴是线段BC的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.三、解答题(共78分)19、(1)、证明过程见解析;(2)、【解析】试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.试题解析:(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(1﹣x):1,解得:x=,∴DE的长是.考点:相似三角形的判定与性质.20、(1);(2)直线经过点,理由见解析;(1)的值为或.【分析】(1)依据直线l1:y=-2x+b和反比例数的图象都经过点P(2,1),可得b=5,m=2,进而得出直线l1和反比例函数的表达式;
(2)先根据反比例函数解析式求得点Q的坐标为,依据当时,y=-2×+5=4,可得直线l1经过点Q;
(1)根据OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,再过M,Q分别作x轴,y轴的垂线,设点M的坐标为(a,b),根据平行线分线段成比例列方程求解得出点M的坐标,从而求出k的值.【详解】解:(1)∵直线和反比例函数的图象都经过点,.∴直线l1的解析式为y=-2x+5,反比例函数大家解析式为;(2)直线经过点,理由如下.点在反比例函数的图象上,.点的坐标为.当时,.直线经过点;(1)的值为或.理由如下:OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2,如图,过点M作ME⊥x轴交PC于点E,MF⊥y轴于点F;过点Q作QA⊥x轴交PC于点A,作QB⊥y轴于点B,交FM于点G,设点M的坐标为(a,b),图①∵点P的坐标为(2,1),点Q的坐标为(,4),∴AE=a-,PE=2-a,∵ME∥BC,QM:PM=1:2,∴AE:PE=1:2,∴2-a=2(a-),解得a=1,同理根据FM∥AP,根据QG:AG=QM:PM=1:2,可得(4-b):(b-1)=1:2,解得b=1.所以点M的坐标为(1,1),代入y=kx可得k=1;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,如图②,图②同理可得点M的坐标为(,2),代入y=kx可得k=.故k的值为1或.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标同时满足两函数解析式.解决问题的关键是掌握待定系数法求函数解析式以及一次函数图象上点的坐标特征,同时需要注意分类讨论思想的应用.21、(1)y=﹣,y=﹣2x+1(2)S△CDE=140;(3)x≥10,或﹣4≤x<0【分析】(1)根据三角形相似,可求出点坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【详解】(1)由已知,OA=6,OB=1,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=把点A(6,0),B(0,1)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+1(2)当=﹣2x+1时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22、216米2【分析】设AB=x米,可知BC=(30-x)米,根据点到墙体、的距离分别是8米、16米,求出x的取值范围,再根据矩形的面积公式得出关于x的函数关系式即可得出结论.【详解】解:设矩形花园的宽为米,则长为米由题意知,解得即显然,时的值随的增大而增大所以,当时,面积取最大值答:符合要求的矩形花园面积的最大值是216米2【点睛】此题主要考查二次函数的应用,关键是正确理解题意,列出S与x的函数关系式解题的关键.23、(2)抛物线的解析式为y=﹣x2+2x+2.(2)证明见解析;(2)点P坐标为(,)或(2,2).【解析】试题分析:(2)将A(﹣2,0)、C(0,2),代入二次函数y=ax2+bx﹣2a,求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(2)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.试题解析:(2)∵二次函数y=ax2+bx﹣2a经过点A(﹣2,0)、C(0,2),∴将A(﹣2,0)、C(0,2),代入,得,解得,∴抛物线的解析式为y=﹣x2+2x+2;(2)如图,连接DC、BC、DB,由y=﹣x2+2x+2=﹣(x﹣2)2+4得,D点坐标为(2,4),∴CD==,BC==2,BD==2,∵CD2+BC2=()2+(2)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(2)y=﹣x2+2x+2对称轴为直线x=2.假设存在这样的点P,①以CD为底边,则P2D=P2C,设P2点坐标为(x,y),根据勾股定理可得P2C2=x2+(2﹣y)2,P2D2=(x﹣2)2+(4﹣y)2,因此x2+(2﹣y)2=(x﹣2)2+(4﹣y)2,即y=4﹣x.又P2点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+2,即x2﹣2x+2=0,解得x2=,x2=<2,(不满足在对称轴右侧应舍去),∴x=,∴y=4﹣x=,即点P2坐标为(,).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=2对称,此时点P2坐标为(2,2).∴符合条件的点P坐标为(,)或(2,2).考点:2.二次函数图象性质;2.等腰三角形性质;2.直角三角形的判定.24、(1)(2)【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常用维修工具识别和使用考核试卷
- 媒体传播办公区租赁合同
- 离婚协议书中税务规划调整
- 儿童图书馆志愿者聘用协议
- 家装施工合同:博物馆展柜制作
- 中草药行业卫生防疫规范
- 西宁市动漫城租赁合同
- 仓储单元门改造协议
- 养殖业健康证发放管理办法
- 住宅小区换热站施工协议
- 《热泵技术》课件
- 2024年5S培训:全面优化工作场所
- 教科版五上综合实践 4.2保护我们的眼睛 课件
- 2024-2030年采购代理行业市场深度分析及竞争格局与投资潜力研究报告
- GB/T 9445-2024无损检测人员资格鉴定与认证
- 餐饮服务电子教案 学习任务4 摆台技能(2)-中餐宴会摆台
- 苏教版小学五年级数学上册《小数四则混合运算及简单计算(例14)》同步教案
- 2024-2030年医疗美容产品行业市场现状供需分析及投资评估规划分析研究报告
- 语文统编版(2024)一年级上册对韵歌 课件
- 九年级中考英语数词课件
- 幼儿园集中用餐食品安全岗位责任制度
评论
0/150
提交评论