版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省青岛超银中学数学九年级第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个三角形,与左图中的三角形相似的是().A. B. C. D.2.若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.<< B.<< C.<< D.<<3.下列事件中,是必然事件的是()A.明天太阳从西边出来 B.打开电视,正在播放《新闻联播》C.兰州是甘肃的省会 D.小明跑完所用的时间为分钟4.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60° B.90° C.120° D.150°5.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另-个转出蓝色即可配成紫色,则可配成紫色的概率是()转盘一转盘二A. B. C. D.7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A. B.C. D.8.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A. B. C. D.9.在△ABC中,若|cosA.45° B.60° C.75° D.105°10.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.5二、填空题(每小题3分,共24分)11.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.12.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为_____米.13.如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(α+β)=__.14.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.15.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.16.如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为▲(结果保留).17.如图,在中,,若,则的值为_________18.如图,菱形的顶点在轴正半轴上,顶点的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,则点的对应点的坐标为________.三、解答题(共66分)19.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)20.(6分)某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21.(6分)如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.22.(8分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.
23.(8分)如图,反比例函数的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别为1和﹣2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,﹣1)时,求△ABC的面积.24.(8分)如图,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.(1)请证明△ABC∽△ADE.(2)求AD的长.25.(10分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.26.(10分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)
参考答案一、选择题(每小题3分,共30分)1、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.
A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;
B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.
故选:B.【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.2、D【分析】先根据反比例函数中k>1判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数y=中k>1,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<1,∴点C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴点A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故选:D.【点睛】本题考查的是反比例函数的性质,掌握反比例函数图象所在象限及增减性是解答此题的关键.3、C【分析】由题意根据必然事件就是一定发生的事件,依据定义依次判断即可.【详解】解:A.明天太阳从西边出来,为不可能事件,此选项排除;B.打开电视,正在播放《新闻联播》,为不一定事件,此选项排除;C.兰州是甘肃的省会,为必然事件,此选项当选;D.小明跑完所用的时间为分钟,为不一定事件,此选项排除.故选:C.【点睛】本题考查必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,
∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:解得:n=1.
故选:C.【点睛】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.5、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.6、B【分析】将转盘一平均分成3份,即将转盘一标“蓝”的部分平均分成两部分,分别记为蓝、蓝,再利用列表法列出所有等可能事件,根据题意求概率即可.【详解】解:将转盘一标“蓝”的部分平均分成两部分,分别记为蓝、蓝,即转盘-平均分成三等份,列表如下:红红蓝黄红(红,红)(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,红)(蓝,蓝)(蓝,黄)蓝(蓝,红)(蓝,红)(蓝,蓝)(蓝,黄)由表格可知,共有12种等可能的结果,其中能配成紫色的结果有5种,所以可配成紫色的概率是.故选B.【点睛】本题考查了概率,用列表法求概率时,必须是等可能事件,这是本题的易错点,熟练掌握列表法是解题的关键.7、B【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.8、B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:
123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,
∴掷得面朝上的点数之和是5的概率是:.
故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9、C【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得
cosA=12,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C10、C【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CPDQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得,设PE=x,则EQ=14-x,解得x的取值,OE=OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直线的两直线相互平行,∴CPDQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,设PE=x,则EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.二、填空题(每小题3分,共24分)11、【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可.【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是.【点睛】本题考查了列举法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,构成三角形的基本要求为两小边之和大于最大边.12、11.1【解析】根据题意证出△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案.【详解】由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗杆的高度为11.1米.故答案为11.1.【点睛】本题考查了相似三角形的应用;由三角形相似得出对应边成比例是解题的关键.13、.【分析】连接BC,构造直角三角形ABC,由正三角形及菱形的对角线平分对角的性质,得出∠BCD=α=30°,∠ABC=90°,从而α+β=∠ACB,分别求出△ABC的边长,【详解】如图,连接BC,∵上图是由10个小正三角形构造成的网格图,∴任意相邻两个小正三角形都组成一个菱形,∴∠BCD=α=30°,∠ABC=90°,∴α+β=∠ACB,∵每个小正三角形的边长均为1,∴AB=2,在Rt△DBC中,,∴BC=,∴在Rt△ABC中,AC=,∴sin(α+β)=sin∠ACB=,故答案为:.【点睛】本题考查了构造直角三角形求三角函数值,解决本题的关键是要正确作出辅助线,明确正弦函数的定义.14、15π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】圆锥的侧面积=•2π•3•5=15π.
故答案是:15π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、【分析】利用已知得出底面圆的半径为,周长为,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为的圆形∴底面圆的半径为∴底面圆的周长为∴扇形的弧长为∴,即圆锥的母线长为∴圆锥的高为.故答案是:【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.16、.【解析】如图,先根据直角三角形的性质求出∠ABC+∠BAC的值,再根据扇形的面积公式进行解答即可:∵△ABC是直角三角形,∴∠ABC+∠BAC=90°.∵两个阴影部分扇形的半径均为1,∴S阴影.17、【分析】根据相似三角形的性质,得出,将AC、AB的值代入即可得出答案.【详解】即DC=故答案为:.【点睛】本题考查了相似三角形的性质,熟练掌握性质定理是解题的关键.18、【分析】先求得点C的坐标,再根据如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或进行解答.【详解】菱形的顶点的坐标为,;过点作,如图,,,在和中,,∴,,,∴点C的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,,则点的对应点的坐标为.故答案为:.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.三、解答题(共66分)19、4秒【分析】作AB⊥CF于B,根据方向角、勾股定理求出AB的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB⊥CF于B,由题意得:∠ACB=60°,AC=120米,则∠CAB=30°∴米,∴米,∵<110,∴消防车的警报声对学校会造成影响,造成影响的路程为米,∵秒,∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.20、(1)B班参赛作品有25件;(2)补图见解析;(3)C班的获奖率高.【分析】(1)直接利用扇形统计图中百分数,求出B班所占的百分比,进而求出B班参赛作品数;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量,从而补全统计图;(3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B班参赛作品有;(2)C班参赛作品获奖数量为,补图如下:;(3)A班的获奖率为,B班的获奖率为,C班的获奖率为50%,D班的获奖率为,故C班的获奖率高.21、1【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理得到根据AB∥CD,得到点M、O、N在同一条直线上,在Rt△AOM中,根据勾股定理求出进而求出ON,在Rt△CON中,根据勾股定理求出根据垂径定理即可求出弦CD的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,∴ON=MN﹣OM=3,在Rt△CON中,∵ON⊥CD,∴CD=2CN=1.【点睛】考查勾股定理以及垂径定理,作出辅助线,构造直角三角形是解题的关键.22、tanC=;BC=1【分析】过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【详解】解:过点A作AD⊥BC于D,
在Rt△ABD中,AB=25,sinB=,
∴AD=AB·sinB=15,
在Rt△ACD中,由勾股定理得CD2=AC2-AD2,
∴CD2=392-152,∴CD=36,
∴tanC==.
在Rt△ABD中,AB=25,AD=15,
∴由勾股定理得BD=20,
∴BC=BD+CD=1.【点睛】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.23、(1),y=x+1;(2)2.【解析】试题分析:(1)根据两点纵坐标的和,可得b的值,根据自变量与函数的值得对关系,可得A点坐标,根据待定系数法,可得反比例函数的解析式;(2)根据自变量与函数值的对应关系,可得B点坐标,根据三角形的面积公式,可得答案.试题解析:解:(1)由题意,得:1+b+(﹣2)+b=1,解得b=1,一次函数的解析式为y=x+1,当x=1时,y=x+1=2,即A(1,2),将A点坐标代入,得=2,即k=2,反比例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软装设计师年终总结范文
- 有关技术服务合同模板(19篇)
- 学生演讲稿关于父母(3篇)
- 教练员聘用合同
- 湖南省常德市2023-2024学年高一上学期期末考试化学试题(含答案)
- 计时服务计费标准
- 设备及货物采购合同分析
- 设计服务合同创意样本
- 诚信大理石供应与安装协议
- 详尽完备的招标文件指南
- 《实验活动1 配制一定物质的量浓度的溶液》课件
- 2024年国家保安员考试题库附参考答案(考试直接用)
- 《“3S”技术及其应用》试卷
- 2024-电商控价协议范本
- 中药养颜秘籍智慧树知到期末考试答案2024年
- 手术切口感染PDCA案例
- 殡葬礼仪服务应急预案
- 校运会裁判员培训
- 烟雾病与麻醉
- 数字教育工具在智慧课堂中的创新应用
- 《光伏发电工程预可行性研究报告编制规程》(NB/T32044-2018)中文版
评论
0/150
提交评论