




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省贵阳市一中高三元月三诊一模数学试题文试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A. B.或C. D.2.函数f(x)=2x-3A.[32C.[323.函数(),当时,的值域为,则的范围为()A. B. C. D.4.已知(),i为虚数单位,则()A. B.3 C.1 D.55.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.6.设是虚数单位,若复数,则()A. B. C. D.7.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件8.已知,若,则等于()A.3 B.4 C.5 D.69.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.810.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.11.已知集合,则全集则下列结论正确的是()A. B. C. D.12.下列不等式正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足不等式组,则的取值范围为________.14.设等比数列的前项和为,若,则数列的公比是.15.函数在区间(-∞,1)上递增,则实数a的取值范围是____16.内角,,的对边分别为,,,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值.19.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.20.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.21.(12分)第十四届全国冬季运动会召开期间,某校举行了“冰上运动知识竞赛”,为了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求、、的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取5人参加“普及冰雪知识”志愿活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号分组频数频率第1组150.15第2组350.35第3组b0.20第4组20第5组100.1合计1.0022.(10分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【题目详解】由韦恩图可知:阴影部分表示,,,.故选:.【题目点拨】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.2、A【解题分析】
根据幂函数的定义域与分母不为零列不等式组求解即可.【题目详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【题目点拨】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx3、B【解题分析】
首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【题目详解】因为,所以,若值域为,所以只需,∴.故选:B【题目点拨】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.4、C【解题分析】
利用复数代数形式的乘法运算化简得答案.【题目详解】由,得,解得.故选:C.【题目点拨】本题考查复数代数形式的乘法运算,是基础题.5、D【解题分析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【题目详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【题目点拨】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.6、A【解题分析】
结合复数的除法运算和模长公式求解即可【题目详解】∵复数,∴,,则,故选:A.【题目点拨】本题考查复数的除法、模长、平方运算,属于基础题7、C【解题分析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【题目详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【题目点拨】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.8、C【解题分析】
先求出,再由,利用向量数量积等于0,从而求得.【题目详解】由题可知,因为,所以有,得,故选:C.【题目点拨】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.9、D【解题分析】
画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【题目详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D【题目点拨】本题主要考查了根据函数零点的个数求参数范围,属于较难题.10、C【解题分析】
由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【题目详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【题目点拨】本题考查了几何概型中的长度型,属于基础题.11、D【解题分析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【题目详解】由,则,故,由知,,因此,,,,故选:D【题目点拨】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.12、D【解题分析】
根据,利用排除法,即可求解.【题目详解】由,可排除A、B、C选项,又由,所以.故选D.【题目点拨】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
画出不等式组表示的平面区域如下图中阴影部分所示,易知在点处取得最小值,即,所以由图可知的取值范围为.14、.【解题分析】
当q=1时,.当时,,所以.15、【解题分析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【题目详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【题目点拨】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.16、【解题分析】∵,∴,即,∴,∴.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【解题分析】
(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【题目详解】(1)当时,,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是..①当时,,所以当时,;当时,,所以在上单调递增,在上单调递减;②当时,,所以当和时,;当时,,所以在和上单调递增,在上单调递减;③当时,,所以在上恒成立.所以在上单调递增;④当时,,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【题目点拨】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.18、(1)(为参数);(2).【解题分析】
(1)根据伸缩变换结合曲线的参数方程可得出曲线的参数方程;(2)将曲线的方程化为普通方程,然后化为极坐标方程,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程,得出和关于的表达式,然后利用三角恒等变换思想即可求出面积的最大值.【题目详解】(1)由于曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,则曲线的参数方程为(为参数);(2)将曲线的参数方程化为普通方程得,化为极坐标方程得,即,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程得,,的面积为,当时,的面积取到最大值.【题目点拨】本题考查参数方程、极坐标方程与普通方程的互化,考查了伸缩变换,同时也考查了利用极坐标方程求解三角形面积的最值问题,要熟悉极坐标方程所适用的基本类型,考查分析问题和解决问题的能力,属于中等题.19、(Ⅰ)(Ⅱ)见证明【解题分析】
(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而,两边取对数,然后再证明恒成立即可,构造函数,,通过求导证明即可.【题目详解】解:(Ⅰ)的定义域为,.由是减函数得,对任意的,都有恒成立.设.∵,由知,∴当时,;当时,,∴在上单调递增,在上单调递减,∴在时取得最大值.又∵,∴对任意的,恒成立,即的最大值为.∴,解得.(Ⅱ)由是减函数,且可得,当时,,∴,即.两边同除以得,,即.从而,所以①.下面证;记,.∴,∵在上单调递增,∴在上单调递减,而,∴当时,恒成立,∴在上单调递减,即时,,∴当时,.∵,∴当时,,即②.综上①②可得,.【题目点拨】本题考查了导数与函数的单调性的关系,考查了函数的最值,考查了构造函数的能力,考查了逻辑推理能力与计算求解能力,属于难题.,20、(1)更适宜(2)(3)x为2时,烧开一壶水最省煤气【解题分析】
(1)根据散点图是否按直线型分布作答;(2)根据回归系数公式得出y关于的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.【题目详解】(1)更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.(2)由公式可得:,,所以所求回归方程为.(3)设,则煤气用量,当且仅当时取“”,即时,煤气用量最小.故x为2时,烧开一壶水最省煤气.【题目点拨】本题考查拟合模型的选择,回归方程的求解,涉及均值不等式的使用,属综合中档题.21、(1),,,;(2)【解题分析】
(1)根据第1组的频数和频率求出,根据频数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皖西卫生职业学院《数字游戏角色设计》2023-2024学年第二学期期末试卷
- 幼儿园大班社会活动《课间十分钟》教案(5篇)
- 2025年重庆市安全员知识题库及答案
- 莆田学院《数据结构(Java)》2023-2024学年第二学期期末试卷
- 天津中德应用技术大学《商务数据分析》2023-2024学年第二学期期末试卷
- 潍坊学院《土地测量与评价》2023-2024学年第二学期期末试卷
- 邯郸科技职业学院《风电机组设计与制造》2023-2024学年第二学期期末试卷
- 长治幼儿师范高等专科学校《预算管理模拟》2023-2024学年第二学期期末试卷
- 2025年江西省建筑安全员《B证》考试题库
- 2025年湖南省安全员《A证》考试题库及答案
- 人教版四年级数学下册《图形的运动(二)》试题(含答案)
- 《老年人权益保障法》
- 2025年交管12123驾驶证学法减分题库与参考答案
- 2025下半年上海事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 天津市和平区2024-2025学年高一(上)期末质量调查物理试卷(含解析)
- 《呼吸》系列油画创作中诗意建构的研究与实践
- 客流统计系统施工方案
- 船舶制造设施安全生产培训
- SH∕T 3097-2017 石油化工静电接地设计规范
- 基础构成设计全套教学课件
- Python程序设计基础PPT(本科)完整全套教学课件
评论
0/150
提交评论