




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福州七中高三第一次联考数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.2.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.53.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.4.中,角的对边分别为,若,,,则的面积为()A. B. C. D.5.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.6.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.7.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.8.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或59.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于10.已知等式成立,则()A.0 B.5 C.7 D.1311.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.1112.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上仅有2个零点,设,则在区间上的取值范围为_______.14.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.15.已知,记,则的展开式中各项系数和为__________.16.已知非零向量,满足,且,则与的夹角为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.18.(12分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.19.(12分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.20.(12分)如图,在中,,的角平分线与交于点,.(Ⅰ)求;(Ⅱ)求的面积.21.(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),.求证:对任意的恒成立.22.(10分)的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若,求的面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【题目详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【题目点拨】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.2、D【解题分析】
由对数运算法则和等比数列的性质计算.【题目详解】由题意.故选:D.【题目点拨】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.3、B【解题分析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.4、A【解题分析】
先求出,由正弦定理求得,然后由面积公式计算.【题目详解】由题意,.由得,.故选:A.【题目点拨】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.5、D【解题分析】
集合.为自然数集,由此能求出结果.【题目详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【题目点拨】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.6、B【解题分析】
选B.考点:圆心坐标7、D【解题分析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【题目详解】由题意,设点.,即,整理得,则,解得或..故选:.【题目点拨】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.8、B【解题分析】
根据渐近线方程求得,再利用双曲线定义即可求得.【题目详解】由于,所以,又且,故选:B.【题目点拨】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.9、D【解题分析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.考点:平面与平面的位置关系,平面的基本性质及其推论.10、D【解题分析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【题目详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【题目点拨】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.11、A【解题分析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【题目详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【题目点拨】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.12、D【解题分析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【题目详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【题目点拨】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【题目详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所以,所以,所以,所以,,所以.故答案为:.【题目点拨】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难.对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围.14、1【解题分析】
根据均值的定义计算.【题目详解】由题意,∴.故答案为:1.【题目点拨】本题考查均值的概念,属于基础题.15、【解题分析】
根据定积分的计算,得到,令,求得,即可得到答案.【题目详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【题目点拨】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.16、(或写成)【解题分析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【题目详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【题目点拨】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【题目详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【题目点拨】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.18、(1)的普通方程为,的直角坐标方程为.(2)最小值为,此时【解题分析】
(1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.(2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.【题目详解】(1)由题意知的参数方程为(为参数)所以的普通方程为.由得,所以的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离,因为.当且仅当时,取得最小值为,此时的直角坐标为即.【题目点拨】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用曲线参数方程求解点到直线距离的最小值问题,属于中档题.19、(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解题分析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1)由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增.③若,即,同理在单调递减,在单调递增(3)由(1)知,所以,令,则对恒成立,所以在区间内单调递增,所以恒成立,所以函数在区间内单调递增.假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,设,,则对恒成立,所以函数在区间内单调递增,故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.20、(Ⅰ);(Ⅱ).【解题分析】试题分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,进而得,在中,由正弦定理得,所以的面积即可得解.试题解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面积.21、(1);(2)详见解析;(3)详见解析.【解题分析】
(1)根据,可求得,再根据是常数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于鞍山千山旅游非物质文化遗产的安全防护设计与研究
- 工程沉降监测与风险防范合同
- 车贷中介服务及贷后管理合作协议
- 跨国企业车间承包管理服务合同范本
- 房地产私募基金财务顾问财务顾问尽职调查合同
- 《城市综合体商业布局分析与销售策略实施合同》
- 餐饮饭店食品安全管理与租赁合同
- 住宅小区清洁服务及垃圾分类指导协议
- 车辆赠与及汽车租赁平台合作协议
- 草原生态保护承包权转让与草原畜牧业转型协议
- 2025年医疗美容行业私密整形技术与市场规范报告
- 【课件】破茧 逐光-2026届新高三启航主题班会:挑战极限成就梦想(含规划指南、学法指导、心理护航)
- 第27课 中国特色社会主义的开创与发展 课件 中外历史纲要(上)
- 2025年浙江宁波宁海县第一医院招考聘用紧缺专业编外医师笔试历年典型考题解题思路附带答案详解
- 3D打印食品安全标准-洞察及研究
- 在线网课知道知慧《战舰与海战》单元测试答案
- 动物疫病流行病学调查表诊断送检用
- 模具技术要求
- 广东省公务员录用审批表
- 桂林六面顶压机邵阳插装阀说明书大增压比
- 钻孔灌注桩灌注旁站记录
评论
0/150
提交评论