版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省重点中学2024届高三下学期第二次模拟考试数学试题理试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.2.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.3.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是()A.1月至8月空气合格天数超过天的月份有个B.第二季度与第一季度相比,空气达标天数的比重下降了C.8月是空气质量最好的一个月D.6月份的空气质量最差.4.设全集,集合,.则集合等于()A. B. C. D.5.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.6.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则()A. B. C. D.7.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.8.已知,则()A.5 B. C.13 D.9.已知函数,,若成立,则的最小值是()A. B. C. D.10.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.11.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.14.设满足约束条件且的最小值为7,则=_________.15.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.16.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.18.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.19.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.20.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.21.(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.22.(10分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【题目详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【题目点拨】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.2、D【解题分析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【题目详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【题目点拨】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.3、D【解题分析】由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.4、A【解题分析】
先算出集合,再与集合B求交集即可.【题目详解】因为或.所以,又因为.所以.故选:A.【题目点拨】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.5、B【解题分析】
根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【题目详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【题目点拨】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.6、D【解题分析】
由半圆面积之比,可求出两个直角边的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【题目详解】解:由题意知,以为直径的半圆面积,以为直径的半圆面积,则,即.由,得,所以.故选:D.【题目点拨】本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.7、D【解题分析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【题目详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【题目点拨】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.8、C【解题分析】
先化简复数,再求,最后求即可.【题目详解】解:,,故选:C【题目点拨】考查复数的运算,是基础题.9、A【解题分析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.10、B【解题分析】
通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【题目详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【题目点拨】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.11、C【解题分析】
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【题目详解】解:若{an}是等比数列,则,
若,则,即成立,
若成立,则,即,
故“”是“”的充要条件,
故选:C.【题目点拨】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.12、C【解题分析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【题目点拨】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设:,:,利用点到直线的距离,列出式子,求出的值即可.【题目详解】解:由圆,可知圆心,半径为.设直线:,则:,圆心到直线的距离为,,.圆心到直线的距离为半径,即,并根据垂径定理的应用,可列式得到,解得.故答案为:.【题目点拨】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.14、3【解题分析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【题目详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【题目点拨】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.15、【解题分析】
先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【题目详解】取的外心为,设为球心,连接,则平面,取的中点,连接,,过做于点,易知四边形为矩形,连接,,设,.连接,则,,三点共线,易知,所以,.在和中,,,即,,所以,,得.所以.【题目点拨】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.16、【解题分析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,(2)最小正整数的值为35.【解题分析】
(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出的取值范围,进而求出最小值.【题目详解】解析:(1)由题意可得,当时,,∴,,当时,,整理可得,∴是首项为1,公差为1的等差数列,∴,.(2)由(1)可得,∴,解得,∴最小正整数的值为35.【题目点拨】本题考查了等差中项,考查了等差数列的定义,考查了与的关系,考查了裂项相消求和.当已知有与的递推关系时,常代入进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.18、(1);(2)【解题分析】
(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【题目详解】(1),,由正弦定理得:,即,,,,又,.(2)在锐角中,,..,,,,函数的值域为.【题目点拨】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.19、(1),;(2)【解题分析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.20、(1)..(2)最大距离为.【解题分析】
(1)直接利用极坐标方程和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离公式得到答案.【题目详解】(1)由,得,则曲线的直角坐标方程为,即.直线的直角坐标方程为.(2)可知曲线的参数方程为(为参数),设,,则到直线的距离为,所以线段的中点到直线的最大距离为.【题目点拨】本题考查了极坐标方程,参数方程,距离的最值问题,意在考查学生的计算能力.21、(1)证明见解析;(2)【解题分析】
(1)求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书馆卫生间管理规定
- 纪录片编剧服务协议
- 体育运动区房产交易样板
- 研发部门休假管理方案
- 学校地暖工程服务合同
- 旅游推广记者站管理办法
- 电力设施电子招投标竞争格局
- 精密仪器电焊工招聘合同
- 墙绘施工合同公园景观墙绘
- 房屋户外景观水景施工合同
- 机动车维修竣工出厂合格证
- 房地产:融创 -建筑行业第三方测评体系宣贯
- GBZ(卫生) 18-2013职业性皮肤病的诊断总则
- GB/T 29894-2013木材鉴别方法通则
- 某厂房主体结构验收汇报材料
- GB/T 20466-2006水中微囊藻毒素的测定
- GB 30721-2014水(地)源热泵机组能效限定值及能效等级
- 云南校长职级考试试题
- GA/T 1081-2020安全防范系统维护保养规范
- 三重一大存在问题及整改措施六篇
- 中班数学《米老鼠的水果店认识以内的数》课件一等奖幼儿园名师优质课获奖比赛公开课面试试讲
评论
0/150
提交评论