版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省佳木斯一中高三下学期5月调研考试(数学试题文)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为()A.2 B. C. D.32.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种3.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.4.关于函数,有下述三个结论:①函数的一个周期为;②函数在上单调递增;③函数的值域为.其中所有正确结论的编号是()A.①② B.② C.②③ D.③5.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.6.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biēnaò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为()A.平方尺 B.平方尺C.平方尺 D.平方尺7.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.8.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.9.函数,,的部分图象如图所示,则函数表达式为()A. B.C. D.10.若,则的值为()A. B. C. D.11.在边长为1的等边三角形中,点E是中点,点F是中点,则()A. B. C. D.12.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.14.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.15.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.16.若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.18.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87919.(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:①求乙公司送餐员日工资的分布列和数学期望;②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.20.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.21.(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.22.(10分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由已知,圆心M到渐近线的距离为,可得,又,解方程即可.【题目详解】由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【题目点拨】本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.2、B【解题分析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【题目点拨】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.3、D【解题分析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【题目详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【题目点拨】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.4、C【解题分析】
①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【题目详解】因为,故①错误;当时,,所以,所以在上单调递增,故②正确;函数的值域等价于函数的值域,易知,故当时,,故③正确.故选:C.【题目点拨】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.5、A【解题分析】
分段求解函数零点,数形结合,分类讨论即可求得结果.【题目详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【题目点拨】本题考查由函数零点的个数求参数范围,属中档题.6、A【解题分析】
根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【题目详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点,设球半径为,则,所以外接球的表面积,故选:A.【题目点拨】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.7、A【解题分析】
化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【题目详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【题目点拨】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。8、C【解题分析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【题目详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【题目点拨】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.9、A【解题分析】
根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【题目详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A【题目点拨】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.10、C【解题分析】
根据,再根据二项式的通项公式进行求解即可.【题目详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【题目点拨】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力11、C【解题分析】
根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【题目详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【题目点拨】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.12、A【解题分析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【题目详解】依题意,得,故,故,,,则.故选:A.【题目点拨】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【题目详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【题目点拨】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.14、【解题分析】
画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【题目详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,可得,解得,所以椭圆的离心率为.故答案为:.【题目点拨】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.15、【解题分析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;所以所求的概率是.考点:古典概型概率16、13【解题分析】
由导函数的应用得:设,,所以,,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【题目详解】解:设,,所以,,又,所以,即,取得:,又,所以,故,故答案为:13【题目点拨】本题考查了导函数的应用、二项式定理,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解题分析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.解法二:可利用导数,先证明不等式,,,,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.【题目详解】(1)由题意,得,,由,…①,得,令,则,因为,所以在单调递增,又,所以当时,,单调递增;当时,,单调递减;所以,当且仅当时等号成立.故方程①有且仅有唯一解,实数的值为1.(2)解法一:令(),则,所以当时,,单调递增;当时,,单调递减;故.令(),则.(i)若时,,在单调递增,所以,满足题意.(ii)若时,,满足题意.(iii)若时,,在单调递减,所以.不满足题意.综上述:.解法二:先证明不等式,,,…(*).令,则当时,,单调递增,当时,,单调递减,所以,即.变形得,,所以时,,所以当时,.又由上式得,当时,,,.因此不等式(*)均成立.令(),则,(i)若时,当时,,单调递增;当时,,单调递减;故.(ii)若时,,在单调递增,所以.因此,①当时,此时,,,则需由(*)知,,(当且仅当时等号成立),所以.②当时,此时,,则当时,(由(*)知);当时,(由(*)知).故对于任意,.综上述:.【题目点拨】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.18、(1)0.0081(2)见解析,保留乙生产线较好.【解题分析】
(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【题目详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:.设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计.那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:.(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,∵,,∴有90%把握认为该企业生产的这种产品的质量指标值与生产线有关.由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,∵,∴保留乙生产线较好.【题目点拨】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.19、(1);(2)①分布列见解析,;②小张应选择甲公司应聘.【解题分析】
(1)记抽取的3天送餐单数都不小于40为事件,可得(A)的值.(2)①设乙公司送餐员送餐单数为,可得当时,,以此类推可得:当时,当时,的值.当时,的值,同理可得:当时,.的所有可能取值.可得的分布列及其数学期望.②依题意,甲公司送餐员日平均送餐单数.可得甲公司送餐员日平均工资,与乙数学期望比较即可得出.【题目详解】解:(1)由表知,50天送餐单数中有30天的送餐单数不小于40单,记抽取的3天送餐单数都不小于40为事件,则.(2)①设乙公司送餐员的送餐单数为,日工资为元,则当时,;当时,;当时,;当时,;当时,.所以的分布列为228234240247254.②依题意,甲公司送餐员的日平均送餐单数为,所以甲公司送餐员的日平均工资为元,因为,所以小张应选择甲公司应聘.【题目点拨】本题考查了随机变量的分布列与数学期望、古典概率计算公式、组合计算公式,考查了推理能力与计算能力,属于中档题.20、(1),(2)【解题分析】
试题分析:利用将极坐标方程化为直角坐标方程:化简为ρcosθ+ρsinθ=1,即为x+y=1.再利用点到直线距离公式得:设点P的坐标为(2cosα,sinα),得P到直线l的距离试题解析:解:化简为ρcosθ+ρsinθ=1,则直线l的直角坐标方程为x+y=1.设点P的坐标为(2cosα,sinα),得P到直线l的距离,dmax=.考点:极坐标方程化为直角坐标方程,点到直线距离公式21、(1).(2)【解题分析】
(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,构造函数g(x)=x2+(t﹣2)x﹣tlnx,结合导数及函数的性质可求.【题目详解】(1),x>0,由题意可得,0,解可得t=﹣4,∴,易得,当x>2,0<x<1时,f′(x)>0,函数单调递增,当1<x<2时,f′(x)<0,函数单调递减,故当x=1时,函数取得极大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0时恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,令g(x)=x2+(t﹣2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地产超市大搬家活动方案
- 老年人租房合同注意事项
- 新型水性油漆施工方案研究
- 可穿戴健康技术行业相关项目经营管理报告
- 循环泵市场需求与消费特点分析
- 常州工学院教育培训创新方案
- 老龄化社会的智能化养老解决方案
- 印制的彩票产业运行及前景预测报告
- 老年人健康管理知识分享方案
- 医用导管市场需求与消费特点分析
- 湖北省武汉市2022-2023学年八年级上学期语文期中试卷(含答案)
- 1000字作文稿纸模板(完美修正版)
- 中学学生操行等级评定表
- 钢结构施工安全技术交底
- 新时代女大学生修养智慧树知到课后章节答案2023年下枣庄学院
- 项目复盘工作报告PPT模板
- 食谱编制-食谱编制案例分析(食品营养与配餐课件)
- 患者安全目标与核心护理制度课件
- 句子成分及句子基本结构(共32张PPT)
- 幼儿教育学基础(第二版)中职PPT完整全套教学课件
- 医疗安全管理与医疗风险防范培训课件
评论
0/150
提交评论