版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北随州市普通高中2024届招生全国统一考试4月(二诊)调研测试(康德版)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.2.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A. B. C. D.3.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.4.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是()A.1 B. C. D.05.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为A. B.C. D.6.已知函数,则在上不单调的一个充分不必要条件可以是()A. B. C.或 D.7.学业水平测试成绩按照考生原始成绩从高到低分为、、、、五个等级.某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班()A.物理化学等级都是的学生至多有人B.物理化学等级都是的学生至少有人C.这两科只有一科等级为且最高等级为的学生至多有人D.这两科只有一科等级为且最高等级为的学生至少有人8.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.9.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.10.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.211.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③12.已知复数满足,(为虚数单位),则()A. B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知是等比数列,若,,且∥,则______.14.已知数列的前项和为,,且满足,则数列的前10项的和为______.15.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.16.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.18.(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.19.(12分)在锐角中,,,分别是角,,所对的边,的面积,且满足,则的取值范围是()A. B. C. D.20.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.21.(12分)已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.22.(10分)已知在中,角,,的对边分别为,,,的面积为.(1)求证:;(2)若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【题目详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.【题目点拨】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.2、A【解题分析】
可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【题目详解】可求得直线关于直线的对称直线为,当时,,,当时,,则当时,,单减,当时,,单增;当时,,,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【题目点拨】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题3、C【解题分析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【题目详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【题目点拨】本题考查了函数单调性和不等式的基础知识,属于中档题.4、B【解题分析】
根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.【题目详解】由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【题目点拨】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.5、C【解题分析】
由题可得,解得,则,,所以这部分男生的身高的中位数的估计值为,故选C.6、D【解题分析】
先求函数在上不单调的充要条件,即在上有解,即可得出结论.【题目详解】,若在上不单调,令,则函数对称轴方程为在区间上有零点(可以用二分法求得).当时,显然不成立;当时,只需或,解得或.故选:D.【题目点拨】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.7、D【解题分析】
根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.【题目详解】根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),表格变为:物理化学对于A选项,物理化学等级都是的学生至多有人,A选项错误;对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),C选项错误;对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.故选:D.【题目点拨】本题考查合情推理,考查推理能力,属于中等题.8、B【解题分析】
通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【题目详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【题目点拨】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.9、B【解题分析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【题目详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【题目点拨】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.10、C【解题分析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【题目详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【题目点拨】本小题主要考查函数的奇偶性和周期性,属于基础题.11、C【解题分析】
根据直线与平面,平面与平面的位置关系进行判断即可.【题目详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【题目点拨】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.12、A【解题分析】,故,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】若,,且∥,则,由是等比数列,可知公比为..故答案为.14、1【解题分析】
由得时,,两式作差,可求得数列的通项公式,进一步求出数列的和.【题目详解】解:数列的前项和为,,且满足,①当时,,②①-②得:,整理得:(常数),故数列是以为首项,2为公比的等比数列,所以(首项不符合通项),故,所以:,故答案为:1.【题目点拨】本题主要考查数列的通项公式的求法及应用,数列的前项和的公式,属于基础题.15、【解题分析】
构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【题目详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【题目点拨】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.16、【解题分析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【题目详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【题目点拨】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)3;(Ⅱ).【解题分析】
(Ⅰ)函数,利用和差公式和倍角公式,化简即可求得;(Ⅱ)由(Ⅰ)知函数,根据点是函数图象的一个对称中心,代入可得,利用余弦定理、基本不等式的性质即可得出.【题目详解】(Ⅰ)的最大值为最小正周期为(Ⅱ)由题意及(Ⅰ)知,,故故的面积的最大值为.【题目点拨】本题考查三角函数的和差公式、倍角公式、三角函数的图象与性质、余弦定理、基本不等式的性质,考查理解辨析能力与运算求解能力,属于中档基础题.18、(1)(2)【解题分析】
(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【题目详解】(1)依题意,为真,则无解,即无解;令,则,故当时,,单调递增,当,,单调递减,作出函数图象如下所示,观察可知,,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【题目点拨】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.19、A【解题分析】
由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【题目详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,则,所以,可得,又由的面积,所以,则.故选:A.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.20、(1);(2)【解题分析】
(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 升学宴家长致辞(汇编15篇)
- 鲁抗医药2024年度向特定对象发行A股股票方案的论证分析报告
- 前台行政工作总结(15篇)
- 二年级语文教学工作计划4篇
- 学生通讯录系统课程设计
- 湖南常德市2024年九年级(上)物理期末模拟试卷附参考答案
- 同学聚会校长致辞【五篇】
- 做销售合同范本(2篇)
- 《职场沟通》电子教案 项目三 职场沟通倾听技能准备
- 2025年会计、审计及税务服务项目建议书
- 电气自动化专业职业生涯目标规划书范例及步骤
- 水利工程特点、重点、难点及应对措施
- 物业经理转正述职
- 贸易岗位招聘面试题及回答建议(某大型国企)2025年
- 中南林业科技大学《高等代数》2023-2024学年第一学期期末试卷
- 北师大版(2024新版)生物七年级上册期末考点复习提纲
- 课件 军人职责
- Unit 5 Fun ClubsSectionA1a-1d说课稿2024-2025学年人教版英语七年级上册
- 2025蛇年元旦晚会
- 浙江省杭州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 环保行业工业废气污染防治技术路线方案
评论
0/150
提交评论