四川省井研中学2024届高三第一次五校联考数学试题_第1页
四川省井研中学2024届高三第一次五校联考数学试题_第2页
四川省井研中学2024届高三第一次五校联考数学试题_第3页
四川省井研中学2024届高三第一次五校联考数学试题_第4页
四川省井研中学2024届高三第一次五校联考数学试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省井研中学2024届高三第一次五校联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则的大小关系为()A. B. C. D.2.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件3.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.4.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.5.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.6.计算等于()A. B. C. D.7.命题“”的否定为()A. B.C. D.8.“是函数在区间内单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种 B.24种 C.36种 D.48种10.已知纯虚数满足,其中为虚数单位,则实数等于()A. B.1 C. D.211.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]12.过点的直线与曲线交于两点,若,则直线的斜率为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.在中,内角所对的边分别为,若,的面积为,则_______,_______.14.已知复数(为虚数单位),则的模为____.15.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.16.已知正项等比数列中,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.18.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.19.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:20.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积21.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【题目详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【题目点拨】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.2、D【解题分析】

由题意列出约束条件和目标函数,数形结合即可解决.【题目详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【题目点拨】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.3、C【解题分析】

根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【题目详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【题目点拨】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.4、B【解题分析】

根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【题目详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【题目点拨】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.5、D【解题分析】

根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【题目详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【题目点拨】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.6、A【解题分析】

利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【题目详解】原式.故选:A【题目点拨】本小题主要考查诱导公式,考查对数运算,属于基础题.7、C【解题分析】

套用命题的否定形式即可.【题目详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【题目点拨】本题考查全称命题的否定,属于基础题.8、C【解题分析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.9、C【解题分析】

先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【题目详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【题目点拨】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.10、B【解题分析】

先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【题目详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【题目点拨】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.11、B【解题分析】

先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则,所以.故选:B.【题目点拨】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.12、A【解题分析】

利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【题目详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.故选:A【题目点拨】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由已知及正弦定理,三角函数恒等变换的应用可得,从而求得,结合范围,即可得到答案运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【题目详解】由已知及正弦定理可得,可得:解得,即,由面积公式可得:,即由余弦定理可得:即有解得【题目点拨】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案14、【解题分析】,所以.15、2.【解题分析】

由双曲线的一条渐近线为,解得.求出双曲线的右焦点,利用点到直线的距离公式求解即可.【题目详解】双曲线的一条渐近线为解得:双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【题目点拨】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题.16、【解题分析】

利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【题目详解】由,所以,解得.,所以,所以.故答案为:【题目点拨】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、≤x≤【解题分析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.18、(1);(2).【解题分析】

(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)①当直线斜率不存在时,易求坐标,从而得到所求面积;②当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【题目详解】(1),,为等边三角形,,椭圆的标准方程为.(2)设四边形的面积为.①当直线的斜率不存在时,可得,,.②当直线的斜率存在时,设直线的方程为,设,,联立得:,,,.,,,,面积.令,则,,令,则,,在定义域内单调递减,.综上所述:四边形面积的取值范围是.【题目点拨】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.19、(I)详见解析;(II)2【解题分析】

(I)求导得到f'(x)=ex-a,讨论a≤0(II)f12=e-12a-5【题目详解】(I)f(x)=ex-ax当a≤0时,f'(x)=e当a>0时,f'(x)=ex-a=0,x=lna当x∈lna,+∞时,综上所述:a≤0时,fx在R上单调递增;a>0时,fx在-∞,ln(II)f(x)=ex-ax-bf12=现在证明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故当x∈0,+∞上时,x2+1f'x在x∈0,+∞上单调递增,故fx在0,12上单调递减,在1综上所述:a+5b的最大值为【题目点拨】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.20、(1),;(2).【解题分析】

(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积.【题目详解】(1)曲线的极坐标方程为:,因为曲线的普通方程为:,曲线的极坐标方程为;(2)由(1)得:点的极坐标为,点的极坐标为,,点到射线的距离为的面积为.【题目点拨】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.21、(1);(2).【解题分析】

(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.22、(1)的极坐标方程为,普通方程为;(2)【解题分析】

(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论