版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省徐州市重点中学高三下学期期中联考数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.16002.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.3.设,满足约束条件,则的最大值是()A. B. C. D.4.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.设,是方程的两个不等实数根,记().下列两个命题()①数列的任意一项都是正整数;②数列存在某一项是5的倍数.A.①正确,②错误 B.①错误,②正确C.①②都正确 D.①②都错误6.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.7.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为()A. B. C. D.48.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.89.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.4510.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.511.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.12.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的常数项为_______.14.“今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为____尺,设该女子一个月中第n天所织布的尺数为,则______.15.已知数列满足,且,则______.16.数列的前项和为,则数列的前项和_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男女合计已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.下面的临界值表供参考:(参考公式,其中)18.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.19.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.21.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.22.(10分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【题目详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【题目点拨】本题主要考查频率直方图的应用,属基础题.2、C【解题分析】
设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【题目详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【题目点拨】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.3、D【解题分析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【题目详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【题目点拨】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.4、C【解题分析】
化简得到,得到答案.【题目详解】,故,对应点在第三象限.故选:.【题目点拨】本题考查了复数的化简和对应象限,意在考查学生的计算能力.5、A【解题分析】
利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.【题目详解】因为,是方程的两个不等实数根,所以,,因为,所以,即当时,数列中的任一项都等于其前两项之和,又,,所以,,,以此类推,即可知数列的任意一项都是正整数,故①正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故②错误;故选:A.【题目点拨】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.6、B【解题分析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【题目详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【题目点拨】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.7、D【解题分析】
如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.【题目详解】如图所示:过点作垂直准线于,交轴于,则,设,,则,当,即时等号成立.故选:.【题目点拨】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.8、C【解题分析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【题目详解】解:由,得所以集合的真子集个数为个.故选:C【题目点拨】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.9、B【解题分析】
计算的和,然后除以,得到“5阶幻方”的幻和.【题目详解】依题意“5阶幻方”的幻和为,故选B.【题目点拨】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.10、D【解题分析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.11、A【解题分析】
根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【题目详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【题目点拨】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12、B【解题分析】
由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【题目详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【题目点拨】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【题目详解】的展开式通项公式为:,令,所以,所以常数项为.
故答案为:.【题目点拨】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.14、52【解题分析】
设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【题目详解】设从第2天开始,每天比前一天多织d尺布,
则,
解得,即每天增加的数量为,
,故答案为,52.【题目点拨】本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.15、【解题分析】
数列满足知,数列以3为公比的等比数列,再由已知结合等比数列的性质求得的值即可.【题目详解】,数列是以3为公比的等比数列,又,,.故答案为:.【题目点拨】本题考查了等比数列定义,考查了对数的运算性质,考查了等比数列的通项公式,是中档题.16、【解题分析】
解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【题目详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【题目点拨】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,有的把握认为患心肺疾病与性别有关,理由见解析;(2).【解题分析】
(1)结合题意完善列联表,计算出的观测值,对照临界值表可得出结论;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、,利用列举法列举出所有的基本事件,并确定事件“所选的人中至少有一位从事的是户外作业”所包含的基本事件数,利用古典概型的概率公式可取得所求事件的概率.【题目详解】(1)由于在全部人中随机抽取人,抽到患心肺疾病的人的概率为,所以人中患心肺疾病的人数为人,故可将列联表补充如下:患心肺疾病不患心肺疾病合计男女合计.故有的把握认为患心肺疾病与性别有关;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、.从中选取三人共有以下种情形:、、、、、、、、、.其中至少有一位从事的是户外作业的有种情形,分别为:、、、、、、、、,所以所选的人中至少有一位从事的是户外作业的概率为.【题目点拨】本题考查利用独立性检验的基本思想解决实际问题,同时也考查了利用列举法求解古典概型的概率问题,考查计算能力,属于中等题.18、(1)证明见解析;(2)证明见解析.【解题分析】
证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.19、(1);(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3【解题分析】
(1)由频率和为1,列出方程求的值;(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(3)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.【题目详解】解:(1)由频率分布直方图各小长方形面积总和为1,可知,解得;(2)由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为(人),填表如下:晋级成功晋级失败合计男163450女94150合计2575100假设“晋级成功”与性别无关,根据上表数据代入公式可得,所以有超过的把握认为“晋级成功”与性别有关;(3)由频率分布直方图知晋级失败的频率为,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以可视为服从二项分布,即,,故,,,,.所以的分布列为:01234数学期望为.或().【题目点拨】本题考查了频率分布直方图和离散型随机变量的分布列、数学期望的应用问题,属于中档题.若离散型随机变量,则.20、(1)见解析;(2)证明见解析.【解题分析】
当时,求函数的导数,判断导函数的单调性,计算即为导函数的零点;
当时,分类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注意的外部表现微电影分库周欣然
- 志愿者招募与管理社会工作专业教学案例宝典
- 《光电型传感器》课件
- 小儿咳嗽推拿治疗
- 家长会培训会
- 数学学案:课堂导学比较法
- 儿童全身麻醉护理查房
- 体系管理评审
- 劳动安全培训主题班会
- 《迟到统计范例》课件
- 高考化学三轮冲刺易错题易错点25 盐类水解(解析版)
- 日间照料中心制度模板(四篇)
- 手卫生调查表
- 中小学英语教学衔接问题及对策研究课题申报书
- 友善(课件) 小学生主题班会通用版(共45张PPT)
- 细胞通过分化产生不同类型的细胞课件【知识精讲+高效课堂】高一上学期生物浙科版必修1
- 七星电子流量计CS200产品使用手册(A,C,D)(+profibus+0-20ma)(su)
- 人民医院肿瘤科临床技术操作规范2023版
- PCOS多囊卵巢综合征青春期月经紊乱
- 【超星尔雅学习通】中国现代文学名著选讲网课章节答案
- 保险企业营销人员绩效考核问题研究
评论
0/150
提交评论