2024届江西省南昌市省重点中学高三下学期第二次月考(3月)数学试题_第1页
2024届江西省南昌市省重点中学高三下学期第二次月考(3月)数学试题_第2页
2024届江西省南昌市省重点中学高三下学期第二次月考(3月)数学试题_第3页
2024届江西省南昌市省重点中学高三下学期第二次月考(3月)数学试题_第4页
2024届江西省南昌市省重点中学高三下学期第二次月考(3月)数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省南昌市省重点中学高三下学期第二次月考(3月)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.2.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.4.函数在的图像大致为A. B. C. D.5.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.6.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.7.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.48.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.9.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A. B.C. D.10.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A. B. C. D.11.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.12.曲线上任意一点处的切线斜率的最小值为()A.3 B.2 C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.从2、3、5、7、11、13这六个质数中任取两个数,这两个数的和仍是质数的概率是________(结果用最简分数表示)14.已知向量=(-4,3),=(6,m),且,则m=__________.15.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.16.已知函数.若在区间上恒成立.则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.18.(12分)记数列的前项和为,已知成等差数列.(1)证明:数列是等比数列,并求的通项公式;(2)记数列的前项和为,求.19.(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.20.(12分)的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若,求的面积的最大值.21.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.22.(10分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【题目详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【题目点拨】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.2、B【解题分析】

利用充分必要条件的定义可判断两个条件之间的关系.【题目详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【题目点拨】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.3、C【解题分析】

设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【题目详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【题目点拨】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.4、B【解题分析】

由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【题目详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【题目点拨】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.5、D【解题分析】

本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【题目详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【题目点拨】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。6、A【解题分析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.7、D【解题分析】

根据三视图即可求得几何体表面积,即可解得未知数.【题目详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【题目点拨】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.8、B【解题分析】

根据题意表示出各位上的数字所对应的算筹即可得答案.【题目详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【题目点拨】本题主要考查学生的合情推理与演绎推理,属于基础题.9、C【解题分析】

由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.10、C【解题分析】

根据程序框图写出几次循环的结果,直到输出结果是8时.【题目详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环:第八次循环:所以框图中①处填时,满足输出的值为8.故选:C【题目点拨】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.11、A【解题分析】

根据输入的值大小关系,代入程序框图即可求解.【题目详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【题目点拨】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.12、A【解题分析】

根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【题目详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【题目点拨】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

依据古典概型的计算公式,分别求“任取两个数”和“任取两个数,和是质数”的事件数,计算即可。【题目详解】“任取两个数”的事件数为,“任取两个数,和是质数”的事件有(2,3),(2,5),(2,11)共3个,所以任取两个数,这两个数的和仍是质数的概率是。【题目点拨】本题主要考查古典概型的概率求法。14、8.【解题分析】

利用转化得到加以计算,得到.【题目详解】向量则.【题目点拨】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.15、【解题分析】

作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【题目点拨】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.16、【解题分析】

首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【题目详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:【题目点拨】本题考查一元二次不等式及函数的综合问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;(2).【解题分析】

(1)由题意利用三角函数图象变换规律求得的解析式,然后利用余弦函数的单调性,得出结论;(2)由题意利用余弦函数的图象的对称性求得,再根据余弦函数的定义域和值域,得出结论.【题目详解】由题意得(1)向左平移个单位得到,增区间:解不等式,解得,减区间:解不等式,解得.综上可得,的单调增区间为,减区间为;(2)由题易知,,因为的一条对称轴是,所以,,解得,.又因为,所以,即.因为,所以,则,所以在的值域是.【题目点拨】本题主要考查三角函数图象变换规律,余弦函数图象的对称性,余弦函数的单调性和值域,属于中档题.18、(1)证明见解析,;(2)【解题分析】

(1)由成等差数列,可得到,再结合公式,消去,得到,再给等式两边同时加1,整理可证明结果;(2)将(1)得到的代入中化简后再裂项,然后求其前项和.【题目详解】(1)由成等差数列,则,即,①当时,,又,②由①②可得:,即,时,.所以是以3为首项,3为公比的等比数列,,所以.(2),所以.【题目点拨】此题考查了数列递推式,等比数列的证明,裂列相消求和,考查了学生分析问题和解决问题的能力,属于中档题.19、(1),;(2)1.【解题分析】

(1)利用正弦的和角公式,结合极坐标化为直角坐标的公式,即可求得曲线的直角坐标方程;先写出曲线的普通方程,再利用公式化简为极坐标即可;(2)先求出的直角坐标,据此求得中点的直角坐标,将其转化为极坐标,联立曲线的极坐标方程,即可求得两点的极坐标,则距离可解.【题目详解】(1):可整理为,利用公式可得其直角坐标方程为:,:的普通方程为,利用公式可得其极坐标方程为(2)由(1)可得的直角坐标方程为,故容易得,,∴,∴的极坐标方程为,把代入得,.把代入得,.∴,即,两点间的距离为1.【题目点拨】本题考查极坐标方程和直角坐标方程之间的转化,涉及参数方程转化为普通方程,以及在极坐标系中求两点之间的距离,属综合基础题.20、(1)(2)【解题分析】

(1)由正弦定理边化角化简已知条件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面积的最大值.【题目详解】(1),,所以,所以,,,,.(2)由余弦定理得.,,当且仅当时取等,.所以的面积的最大值为.【题目点拨】本题考查了正余弦定理在解三角形中的应用,考查了三角形面积的最值问题,难度较易.21、(1)或;(2)【解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论