2023-2024学年呼和浩特市第六中学数学九上期末达标检测试题含解析_第1页
2023-2024学年呼和浩特市第六中学数学九上期末达标检测试题含解析_第2页
2023-2024学年呼和浩特市第六中学数学九上期末达标检测试题含解析_第3页
2023-2024学年呼和浩特市第六中学数学九上期末达标检测试题含解析_第4页
2023-2024学年呼和浩特市第六中学数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年呼和浩特市第六中学数学九上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各点中,在反比例函数图象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)2.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-13.如图,已知则添加下列一个条件后,仍无法判定的是()A. B. C. D.4.一名射击爱好者5次射击的中靶环数如下:6,7,1,8,1.这5个数据的中位数是()A.6 B.7 C.8 D.15.抛物线如图所示,给出以下结论:①,②,③,④,⑤,其中正确的个数是()A.2个 B.3个 C.4个 D.5个6.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=07.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.2.4 C.4.8 D.58.一元二次方程中至少有一个根是零的条件是()A.且 B. C.且 D.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形10.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为()A. B. C. D.11.正五边形内接于圆,连接分别与交于点,,连接若,下列结论:①②③四边形是菱形④;其中正确的个数为()A.个 B.个 C.个 D.个12.方程的根是()A.x=4 B.x=0 C. D.二、填空题(每题4分,共24分)13.若,则=_____.14.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.15.如图,若菱形ABCD的边长为2cm,∠A=120°,将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,则EF=_____cm,16.如图,⊙O的半径OA长为6,BA与⊙O相切于点A,交半径OC的延长线于点B,BA长为,AH⊥OC,垂足为H,则图中阴影部分面积为_____.(结果保留根号)17.如果3a=4b(a、b都不等于零),那么a+bb=_____18.如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.三、解答题(共78分)19.(8分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.20.(8分)解方程:(x﹣2)(x﹣1)=3x﹣621.(8分)从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.22.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.23.(10分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.24.(10分)已知,如图,在Rt△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF,当点D在线段BC的反向延长线上,且点A,F分别在直线BC的两侧时.(1)求证:△ABD≌△ACF;(2)若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC,求OC的长度.25.(12分)如图,AC是⊙O的一条直径,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.26.解方程:(1)2x2+3x﹣1=0(2)

参考答案一、选择题(每题4分,共48分)1、A【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;

B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵,∴此点不在反比例函数的图象上,故C错误;D、∵,∴此点不在反比例函数的图象上,故D错误;故选A.2、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0

因式分解得,x(x-1)=0,

于是,得,x=0或x-1=0,

解得x1=0,x2=1,

故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.3、A【分析】先根据∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,

∴∠BAC=∠DAE.A.,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项符合题意;B.,∴△ABC∽△ADE,故本选项不符合题意;C.∴△ABC∽△ADE,故本选项不符合题意;D.∴△ABC∽△ADE,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.4、C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此求解即可.【详解】将这组数据重新排序为6,7,8,1,1,∴中位数是按从小到大排列后第3个数为:8.故选C.5、D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,再根据与x轴的交点坐标代入分析即可得到结果;【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴ab<0,故①②正确;当x=-1时,,故③正确;当x=1时,根据图象可得,故④正确;根据函数图像与x轴有两个交点可得,故⑤正确;故答案选D.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析每一个数据是解题的关键.6、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.7、C【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【详解】连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面积是∴BC⋅AE=24,故选C.8、D【分析】代入,求得一元二次方程需满足的条件.【详解】由题意得,一元二次方程存在一个根代入到中解得故答案为:D.【点睛】本题考查了一元二次方程的解法,掌握解一元二次方程的方法是解题的关键.9、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.10、D【分析】由旋转的性质可得AB'=AB,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【详解】解:∵Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.11、B【分析】①先根据正五方形ABCDE的性质求得∠ABC,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②证明△ABF∽△ACB,得,代入可得BF的长;③先证明CF∥DE且,证明四边形CDEF是平行四边形,再由证得答案;④根据平行四边形的面积公式可得:,即可求得答案.【详解】①∵五方形ABCDE是正五边形,,

∴,

∴,

∴,

同理得:,

∵,,

∴,

∵,∴,∴,则,

∴,

∵,

∴,

∴,

∴;

所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,

∴△ABF∽△ACB,

∴,∵,∴,∵,∴,∴,解得:(负值已舍);所以②正确;③∵,,

∴,

∴CF∥DE,

∵,

∴四边形CDEF是平行四边形,∵,∴四边形CDEF是菱形,所以③正确;④如图,过D作DM⊥EG于M,

同①的方法可得,,

∴,,∴,所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.12、C【分析】利用因式分解法求解即可.【详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键.二、填空题(每题4分,共24分)13、【解析】根据两内项之积等于两外项之积列式整理即可得解.【详解】∵,

∴4(a-b)=3b,

∴4a=7b,

∴,

故答案为:.【点睛】本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.14、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【点睛】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.15、【分析】连接AC、BD,根据题意得出E、F分别为AB、AD的中点,EF是△ABD的中位线,得出EF=BD,再由已知条件根据三角函数求出OB,即可求出EF.【详解】解:连接AC、BD,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,∵将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,∴AE=EO,AF=OF,∴E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD,∵菱形ABCD的边长为2cm,∠A=120°,∴AB=2cm,∠ABC=60°,∴OB=BD,∠ABO=30°,∴OB=AB•cos30°=2×=,∴EF=BD=OB=;故答案为:.【点睛】此题考查菱形的性质,折叠的性质,锐角三角函数,三角形中位线的判定及性质,由折叠得到EF是△ABD的中位线,由此利用锐角三角函数求出OB的长度达到解决问题的目的.16、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根据阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积,计算即可.【详解】∵BA与⊙O相切于点A,∴AB⊥OA,∴∠OAB=90°,∵OA=6,AB=6,∴tan∠B=,∴∠B=30°,∴∠O=60°,∴∠OAH=30°,∴OH=OA=3,∴AH=3,∴阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积=﹣×3×3=;故答案为:.【点睛】此题考查圆的性质,直角三角形中30°角所对的直角边等于斜边的一半,扇形面积公式,三角函数.17、7【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【详解】∵3a=4b(a、b都不等于零),∴设a=4x,则b=3x,那么a+ba故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键.18、【解析】连接OB,OA,过O作,得到,求得,连接IA,IB,根据角平分线的定义得到,,根据三角形的内角和得到,设A,B,I三点所在的圆的圆心为,连接,,得到,根据等腰三角形的性质得到,连接,解直角三角形得到,根据弧长公式即可得到结论.【详解】解:连接OB,OA,过O作,,,在Rt中,,,,,连接IA,IB,点I为的内心,,,,,点P为弧AB上动点,始终等于,点I在以AB为弦,并且所对的圆周角为的一段劣弧上运动,设A,B,I三点所在的圆的圆心为,连接,,则,,,连接,,,,点I移动的路径长故答案为:【点睛】本题考查了三角形的内切圆与内心,解直角三角形,弧长公式以及圆周角定理,根据题意作出辅助线,构造出全等三角形,得出点I在以AB为弦,并且所对的圆周角为的一段劣弧上是解答此题的关键.三、解答题(共78分)19、(1)m≥;(2)m=3【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m﹣2≠0时,△=1+8(m﹣2)≥0,∴m≥且m≠2,当m﹣2=0时,x﹣2=0,符合题意,综上所述,m≥(2)由根与系数的关系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、x=2或x=1【分析】将等式右边进行提取公因数3,然后移项利用因式分解法求解可得.【详解】解:∵(x﹣2)(x﹣1)﹣3(x﹣2)=0,∴(x﹣2)(x﹣1)=0,则x﹣2=0或x﹣1=0,解得x=2或x=1.故答案为:x=2或x=1.【点睛】本题考查了因式分解法.主要有提公因式法,运用公式法,分组分解法和十字相乘法.21、表见解析,【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有4种,∴该点在第二象限的概率为=.【点睛】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.22、(1);(2);(1).【解析】试题分析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(1)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.试题解析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数的函数图象上,∴,解得:,∴反比例函数的解析式为.(2)∵m=1,∴点A的坐标为(2,2),∴OB=2,AB=2.在Rt△ABO中,OB=2,AB=2,∠ABO=90°,∴OA==,cos∠OAB==.(1))∵m=1,∴点C的坐标为(2,2),点D的坐标为(2,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:,∴经过C、D两点的一次函数解析式为.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.23、(1);(2);(2)点的坐标是或【分析】(1)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入求得a的值即可;

(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;

(2)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=2t,P(-2t,2+t),将P(-2t,2+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【详解】解:(1)抛物线的对称轴为x=-=-1.

∵a<0,

∴抛物线开口向下.

又∵抛物线与x轴有交点,

∴C在x轴的上方,

∴抛物线的顶点坐标为(-1,4).

设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入得:4a+4=0,解得:a=-1,

∴抛物线的解析式为y=-x2-2x+2.

(2)将x=0代入抛物线的解析式得:y=2,

∴B(0,2).

∵C(-1,4)、B(0,2)、A(-2,0),

∴BC=,AB=2,AC=2,

∴BC2+AB2=AC2,

∴∠ABC=90°.

∴.即的正切值等于.

(2)如图1所示:记抛物线与x轴的另一个交点为D.

∵点D与点A关于x=-1对称,

∴D(1,0).

∴tan∠DBO=.

又∵由(2)可知:tan∠CAB=.

∴∠DBO=∠CAB.

又∵OB=OA=2,

∴∠BAO=∠ABO.

∴∠CAO=∠ABD.

∴当点P与点D重合时,∠ABP=∠CAO,

∴P(1,0).

如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.

∵BF∥AO,

∴∠BAO=∠FBA.

又∵∠CAO=∠ABP,

∴∠PBF=∠CAB.

又∵PE∥BF,

∴∠EPB=∠PBF,

∴∠EPB=∠CAB.

∴tan∠EPB=.

设BE=t,则PE=2t,P(-2t,2+t).

将P(-2t,2+t)代入抛物线的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.

∴P(-,).

综上所述,点P的坐标为P(1,0)或P(-,).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含t的式子表示点P的坐标是解题的关键.24、(1)证明见解析;(1)【分析】(1)由题意易得AD=AF,∠DAF=90°,则有∠DAB=∠FAC,进而可证AB=AC,然后问题可证;(1)由(1)可得△ABD≌△ACF,则有∠ABD=∠ACF,进而可得∠ACF=135°,然后根据正方形的性质可求解.【详解】(1)证明:∵四边形ADEF为正方形,∴AD=AF,∠DAF=90°,又∵∠BAC=90°,∴∠DAB=∠FAC,∵∠ABC=45°,∠BAC=90°,∴∠ACB=45°,∴∠ABC=∠ACB,∴AB=AC,∴△ABD≌△ACF(SAS);(1)解:由(1)知△ABD≌△ACF,∴∠ABD=∠ACF,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=135°,由(1)知∠ACB=45°,∴∠DCF=90°,∵正方形ADEF边长为,∴DF=4,∴OC=DF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论