版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省苏州市星港中学数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在菱形中,,,为中点,是上一点,为上一点,且,,交于点,关于下列结论,正确序号的选项是()①,②,③④A.①② B.①②③ C.①②④ D.①③④2.过反比例函数图象上一点作两坐标轴的垂线段,则它们与两坐标轴围成的四边形面积为()A.-6 B.-3 C.3 D.63.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是()A.3 B.﹣3 C.1 D.﹣14.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。其中随机事件有()A.1个 B.2个 C.3个 D.4个5.下列是中心对称图形但不是轴对称图形的是()A. B. C. D.6.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.57.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A. B. C. D.8.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④9.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,,.若S=3,则的值为()A.24 B.12 C.6 D.310.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40° B.140° C.70° D.80°11.在中,,,则的值为()A. B. C. D.12.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小二、填空题(每题4分,共24分)13.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.14.如图,中,,且,,则___________15.若,则__________.16.如图,正方形的边长为,点为的中点,点,分别在边,上(点不与点,重合,点不与点,重合),连接,,若以,,为顶点的三角形与相似,且的面积为1,则的长为______.17.已知分别切于点,为上不同于的一点,,则的度数是_______.18.半径为6cm的圆内接正四边形的边长是____cm..三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE最大.①求点P的坐标和PE的最大值.②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.20.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.21.(8分)墙壁及淋浴花洒截面如图所示,已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为43°.求花洒顶端到地面的距离(结果精确到)(参考数据:,,)22.(10分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)如图,一次函数与反比例函数的图象交于、两点,与坐标轴分别交于、两点.(1)求一次函数的解析式;(2)根据图象直接写出中的取值范围;(3)求的面积.24.(10分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)25.(12分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由;(2)若AC=6,CD=5,求FG的长.26.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).
参考答案一、选择题(每题4分,共48分)1、B【分析】依据,,即可得到;依据,即可得出;过作于,依据,根据相似三角形的性质得到;依据,,可得,进而得到.【详解】解:∵菱形中,,.∴,,∴,故①正确;∴,又∵,为中点,,∴,即,又∵,∴∵,∴,∴,∴,故②正确;如图,过作于,则,∴,,,∴中,,又∵,∴,故③正确;∵,,,,∴,,∴,∴,故④错误;故选:B.【点睛】此题考查相似三角形的判定与性质、菱形的性质、等边三角形的性质的综合运用.解题关键在于掌握判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.2、D【分析】根据反比例函数的几何意义可知,矩形的面积为即为比例系数k的绝对值,即可得出答案.【详解】设B点坐标为(x,y),由函数解析式可知,xy=k=-6,则可知S矩形ABCO=|xy|=|k|=6,故选:D.【点睛】本题考查了反比例函数系数k的几何意义,关键是理解图中矩形的面积为即为比例系数k的绝对值.3、D【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可.【详解】设方程的另一根为t,
根据题意得3+t=2,
解得t=﹣1.
即方程的另一根为﹣1.
所以D选项是正确的.【点睛】本题考查了根与系数的关系:是一元二次方程的两根时,,.4、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断.【详解】解:①经过有交通信号灯的路口,遇到红灯,是随机事件;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;③长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;④买一张体育彩票中奖,是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A选项:是中心对称图形但不是轴对称图形,故本选项符合题意;B选项:是中心对称图形,也是轴对称图形,故本选项不符合题意;C选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.7、A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.8、C【解析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△PAO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正确;∵AO:OP:PA=r:r:r=1::.∴④正确;说法正确的是③④,故选C.9、B【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP==1.故选B.10、C【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【详解】∵PA是圆的切线,∴同理根据四边形内角和定理可得:∴故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.11、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选:D.【点睛】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.12、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;
B选项:反比例函数的图象关于原点中心对称,故本选项错误;
C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;
D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.
故选B.二、填空题(每题4分,共24分)13、【分析】本题可利用三角形面积×底×高,直接列式求解.【详解】∵直角三角形两直角边可作为三角形面积公式中的底和高,∴该直角三角形面积.故填:.【点睛】本题考查三角形面积公式以及二次根式的运算,难度较低,注意计算仔细即可.14、1【分析】由及,得,再证△ADE∽△ABC,推出,代入值,即可求出BC.【详解】解:∵,,
∴∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵,
∴,则BC=1,
故答案为:1.【点睛】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的对应边的比相等.15、【分析】根据等式的基本性质,将等式的两边同时除以,即可得出结论.【详解】解:将等式的两边同时除以,得故答案为:.【点睛】此题考查的是将等式变形,掌握等式的基本性质是解决此题的关键.16、1或1【分析】根据正方形的性质以及相似三角形的性质求解即可.【详解】解:∵四边形ABCD是正方形∴,∵E是AB的中点,∴∴,当时有,,∴,∵CM>0,∴CM=1;当时有,,∴,∵CM>0,∴CM=1.故答案为:1或1.【点睛】本题考查的知识点是相似三角形的性质,利用相似三角形的面积比等于对应线段比的平方求解是此题的关键.17、或【分析】连接OA、OB,先确定∠AOB,再分就点C在上和上分别求解即可.【详解】解:如图,连接OA、OB,∵PA、PB分别切于A、B两点,∴∠PAO=∠PBO=90°∴∠AOB=360°-90°-90°-80°=100°,当点C1在上时,则∠AC1B=∠AOB=50°当点C2在B上时,则∠AC2B+∠AC1B=180°,即.∠AC2B=130°.故答案为或.【点睛】本题主要考查了圆的切线性质和圆周角定理,根据已知条件确定∠AOB和分类讨论思想是解答本题的关键.18、6【详解】解:如图:圆的半径是6cm,那么内接正方形的边长为:AB=CB,因为:AB2+CB2=AC2,所以:AB2+CB2=122即AB2+CB2=144解得AB=cm.故答案为:6.三、解答题(共78分)19、(1)y=﹣x2﹣3x+4;(2)①,P②M(,)或(,)【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①根据A(﹣2,6),B(1,0),求得AB的解析式为:y=﹣2x+2,设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),利用PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣(a+)2+,根据二次函数的图像与性质即求解;②根据点M在以AB为直径的圆上,得到∠AMB=90°,即AM2+BM2=AB2,求出,,AB2故可列出方程求解.【详解】解:(1)∵B(1,0)∴OB=1,∵OC=2OB=2,∴BC=3,C(﹣2,0)Rt△ABC中,tan∠ABC=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),∴PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣a2﹣a+2=﹣(a+)2+∴当a=时,PE=,此时P(,)②∵M在直线PD上,且P(,),∴+AB2=32+62=45,∵点M在以AB为直径的圆上此时∠AMB=90°,∴AM2+BM2=AB2,∴++=45解得:,∴M(,)或(,)【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想的应用.20、(1)画图见解析,A1(﹣1,4),B1(1,4);(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.【详解】解:(1)所求作△A1B1C如图所示:由A(4,1)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC=,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×1×2=+1.【点睛】本题考查作图-旋转变换;扇形面积的计算.21、约为。【解析】过C作CF⊥AB于F,于是得到∠AFC=90°,解直角三角形即可得到结论.【详解】解:如图,过点作于点,则,在中,,∵,∴,∴,因此,花洒顶端到地面的距离约为。【点睛】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.22、(1);(2).【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.23、(1)y=-2x+6;(2)或;(1)1.【解析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(1)将△AOB的面积转化为S△AON-S△BON的面积即可.【详解】(1)∵点在反比例函数上,∴,解得,∴点的坐标为,又∵点也在反比例函数上,∴,解得,∴点的坐标为,又∵点、在的图象上,∴,解得,∴一次函数的解析式为.(2)根据图象得:时,的取值范围为或;(1)∵直线与轴的交点为,∴点的坐标为,.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高新技术产品销售合同管理规定2篇
- 二零二五年度游艇购置及保养维修协议3篇
- 2025版智能节能铝合金门窗研发与推广合作协议4篇
- 2025年项目抵押贷款合同范本解读与实操6篇
- 2025版医疗器械融资委托担保合同样本3篇
- 二零二五年度货车货运保险与物流行业信用评估合同
- 2025年度智能机器人销售与技术支持协议3篇
- 2025版新型绿色建筑材料供应及施工合同4篇
- 2025版中英外教专业能力培训与雇佣合同3篇
- 个体资金借入合同:固定期限还款合同版
- 图像识别领域自适应技术-洞察分析
- 个体户店铺租赁合同
- 新概念英语第二册考评试卷含答案(第49-56课)
- 【奥运会奖牌榜预测建模实证探析12000字(论文)】
- 保安部工作计划
- 2023痛风诊疗规范(完整版)
- (完整word版)企业对账函模板
- 土力学与地基基础(课件)
- 主要负责人重大隐患带队检查表
- 鲁滨逊漂流记人物形象分析
- 危险废物贮存仓库建设标准
评论
0/150
提交评论