2023-2024学年湖北省武汉市华中师大一附中数学九上期末质量检测模拟试题含解析_第1页
2023-2024学年湖北省武汉市华中师大一附中数学九上期末质量检测模拟试题含解析_第2页
2023-2024学年湖北省武汉市华中师大一附中数学九上期末质量检测模拟试题含解析_第3页
2023-2024学年湖北省武汉市华中师大一附中数学九上期末质量检测模拟试题含解析_第4页
2023-2024学年湖北省武汉市华中师大一附中数学九上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省武汉市华中师大一附中数学九上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A. B. C. D.2.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是()A.a>-1 B. C. D.a>-1且3.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>04.关于x的一元二次方程x2+mx+m2﹣7=0的一个根是﹣2,则m的值可以是()A.﹣1 B.3 C.﹣1或3 D.﹣3或15.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC.若S△BDE:S△ADE=1:2.则S△DOE:S△AOC的值为()A. B. C. D.6.在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A点的对应点A′坐标为()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)7.抛物线y=﹣(x﹣1)2﹣2的顶点坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)8.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.210.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.11.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次12.如图,为的直径,点是弧的中点,过点作于点,延长交于点,若,,则的直径长为()A.10 B.13 C.15 D.1.二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________.14.点关于轴的对称点的坐标是__________.15.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________cm.16.如图,是的直径,是的切线,交于点,,,则______.17.在中,,,,则____________18.如图1,点M,N,P,Q分别在矩形ABCD的边AB,BC,CD,DA上,我们称四边形MNPQ是矩形ABCD的内接四边形.已知矩形ABCD,AB=2BC=6,若它的内接四边形MNPQ也是矩形,且相邻两边的比为3:1,则AM=_____.三、解答题(共78分)19.(8分)如图①,是平行四边形的边上的一点,且,交于点.(1)若,求的长;(2)如图②,若延长和交于点,,能否求出的长?若能,求出的长;若不能,说明理由.20.(8分)如图,已知△ABC与△A′B′C′关于点O成中心对称,点A的对称点为点A′,请你用尺规作图的方法,找出对称中心O,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).21.(8分)已知抛物线的顶点在第一象限,过点作轴于点,是线段上一点(不与点、重合),过点作轴于点,并交抛物线于点.(1)求抛物线顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围;(2)若直线交轴的正半轴于点,且,求的面积的取值范围.22.(10分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.23.(10分)如图,于,以直径作,交于点恰有,连接.(1)如图1,求证:;(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;(3)在(2)的基础上,若,求的长.24.(10分)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为,且满足,求实数m的值。25.(12分)如图,一个运动员推铅球,铅球在点A处出手,出手时球离地面m.铅球落地点在点B处,铅球运行中在运动员前4m处(即OC=4m)达到最高点,最高点D离地面3m.已知铅球经过的路线是抛物线,根据图示的平面直角坐标系,请你算出该运动员的成绩.26.在如图中,每个正方形有边长为1的小正方形组成:(1)观察图形,请填写下列表格:正方形边长

1

3

5

7

n(奇数)

黑色小正方形个数

正方形边长

2

4

6

8

n(偶数)

黑色小正方形个数

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据左视图的定义画出左视图即可得答案.【详解】从左面看,是正方形,对面中间有一条看不见的棱,用虚线表示,∴B选项符合题意,故选B.【点睛】此题主要考查了简单几何体的三视图,左视图是从左面看所得到的图形.2、D【解析】利用一元二次方程的定义及根的判别式列不等式a≠1且△=22﹣4a×(﹣1)>1,从而求解.【详解】解:根据题意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.3、D【解析】分析:根据抛物线的开口、对称轴及与y轴的交点的位置,可得出a<1、c>1、b>﹣2a,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<1,﹣>1,c>1,∴b>﹣2a,∴b+2a>1.故选D.点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b>﹣2a是解题的关键.4、C【分析】先把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,然后解关于m的方程即可.【详解】解:把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,解得m=﹣1或1.故选:C.【点睛】本题主要考察一元一次方程的解及根与系数的关系,解题关键是熟练掌握计算法则.5、B【分析】依次证明和,利用相似三角形的性质解题.【详解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故选:B.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.6、A【分析】根据相似比为2,B′的坐标为(﹣6,0),判断A′在第三象限即可解题.【详解】解:由题可知OA′:OA=2:1,∵B′的坐标为(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A′的象限是解题关键.7、D【解析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线y=﹣(x﹣1)2﹣2的顶点坐标是(1,﹣2).故选D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.8、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.9、C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.10、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.11、D【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.12、C【分析】连接OD交AC于点G,根据垂径定理以及弦、弧之间的关系先得出DF=AC,再由垂径定理及推论得出DE的长以及OD⊥AC,最后在Rt△DOE中,根据勾股定理列方程求得半径r,从而求出结果.【详解】解:连接OD交AC于点G,∵AB⊥DF,∴,DE=EF.又点是弧的中点,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.设的半径为r,∴OE=AO-AE=r-3,在Rt△ODE中,根据勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直径为3.故选:C.【点睛】本题主要考查垂径定理及其推论,弧、弦之间的关系以及勾股定理,解题的关键是通过作辅助线构造直角三角形,是中考常考题型.二、填空题(每题4分,共24分)13、4.2【解析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x-2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=于是=,解得x=1,即AB=1.所以易求BE=2,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.2.点睛:本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键14、【分析】根据对称点的特征即可得出答案.【详解】点关于轴的对称点的坐标是,故答案为.【点睛】本题考查的是点的对称,比较简单,需要熟练掌握相关基础知识.15、1【分析】根据垂径定理与勾股定理即可求出答案.【详解】解:连接OC,设OE=3x,EB=2x,

∴OB=OC=5x,

∵AB=20cm

∴10x=20

∴x=2cm,∴OC=10cm,OE=6cm,

∴由勾股定理可知:CE=cm,

∴CD=2CE=1cm,

故答案为:1.【点睛】本题考查垂径定理的应用,解题的关键是根据勾股定理求出CE的长度,本题属于基础题型.16、【分析】因是的切线,利用勾股定理即可得到AB的值,是的直径,则△ABC是直角三角形,可证得△ABC∽△APB,利用相似的性质即可得出BC的结果.【详解】解:∵是的切线∴∠ABP=90°∵,∴AB2+BP2=AP2∴AB=∵是的直径∴∠ACB=90°在△ABC和△APB中∴△ABC∽△APB∴∴∴故答案为:【点睛】本题主要考查的是圆的性质以及相似三角形的性质和判定,掌握以上几点是解此题的关键.17、【分析】根据题意利用三角函数的定义可以求得AC,再利用勾股定理可求得AB.【详解】解:由题意作图如下:∵∠C=90°,,,∴,∴.故答案为:.【点睛】本题主要考查三角函数的定义及勾股定理,熟练掌握三角函数的定义以及勾股定理是解题的关键.18、【分析】证明△AMQ∽△DQP,△PCN∽△NBM,设MA=x,则DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=9x﹣3,NB=27x﹣9,表示出NC,由BC长为3,可得方程,解方程即可得解.【详解】解:∵四边形ABCD和四边形MNPQ为矩形,∴∠D=∠A=90°,∠DQP=∠QMA,∴△AMQ∽△DQP,同理△PCM∽△NBM,设MA=x,∵PQ:QM=3:1,∴DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=6﹣(9﹣9x)=9x﹣3,NB=3PC=27x﹣9,BM=6﹣x,∴NC=,∴=3,解得x=.即AM=.故答案为:.【点睛】本题考查矩形的性质,相似三角形的判定与性质,关键是熟练掌握相似三角形的判定与性质及方程的思想方法.三、解答题(共78分)19、(1);(2)能,【分析】(1)由DE∥BC,可得,由此即可解决问题;

(2)由PB∥DC,可得,可得PA的长.【详解】(1)∵为平行四边形∴,,又∵∴又∵∴,∴.(2)能∵为平行四边形,∴,,∴∴∴【点睛】本题考查了相似三角形的判定与性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、见解析【分析】连接AA′,作AA′的垂直平分线得到它的中点O,则点O为对称中心,延长BO到B′,使OB′=OB,延长CO到C′,使OC′=OC,则△A′B′C′满足条件.【详解】如图,点O和△A′B′C′为所作.【点睛】本题考查了根据旋转变化作图的知识,根据作线段的垂直平分线找到对称中心是解决问题的关键.21、(1)函数解析式为y=x+4(x>0);(2)0≤S≤.【分析】(1)抛物线解析式为y=-x2+2mx-m2+m+4,设顶点的坐标为(x,y),利用抛物线顶点坐标公式得到x=m,y=m-4,然后消去m得到y与x的关系式即可.(2)如图,根据已知得出OE=4-2m,E(0,2m-4),设直线AE的解析式为y=kx+2m-4,代入A的坐标根据待定系数法求得解析式,然后联立方程求得交点P的坐标,根据三角形面积公式表示出S=(4-2m)(m-2)=-m2+3m-2=-(m-)2+,即可得出S的取值范围.【详解】(1)由抛物线y=-x2+2mx-m2+m+4可知,a=-1,b=2m,c=-m2+m+4,设顶点的坐标为(x,y),∴x=-=m,∵b=2m,y==m+4=x+4,即顶点的纵坐标随横坐标变化的函数解析式为y=x+4(x>0);(2)如图,由抛物线y=-x2+2mx-m2+m+4可知顶点A(m,m+4),∵轴∴轴∴△ACP∽△ABE,∴∵∴,∵AB=m,∴BE=2m,∵OB=4+m,∴OE=4+m-2m=4-m,∴E(0,4-m),设直线AE的解析式为y=kx+4-m,代入A的坐标得,m+4=km+4-m,解得k=2,∴直线AE的解析式为y=2x+4-m,解得

,,∴P(m-2,m),∴S=(4-m)(m-2)=-m2+3m-2=-(m-3)2+,∴S有最大值

,∴△OEP的面积S的取值范围:0≤S≤.【点睛】本题考查了二次函数的应用,解题的关键是正确的用字母表示出点的坐标,并利用题目的已知条件得到有关的方程或不等式,从而求得未知数的值或取值范围.22、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).【解析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.【详解】(1)∵双曲线y=(m≠0)经过点A(﹣,2),∴m=﹣1.∴双曲线的表达式为y=﹣.∵点B(n,﹣1)在双曲线y=﹣上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),∴,解得∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=,∴点C(,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴点P的坐标为(﹣,0)或(,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.23、(1)证明见解析;(2);理由见解析;(3).【分析】(1)由直径所对圆周角等于90度可得,进而易证,再根据即可证明;(2)由,可得,进而可知,再由同弧所对圆周角相等可得,再分别证明,,从而可得,即可解决问题;(3)设,,由,可得,可得,由,可得,设,,根据,可得,求出即可解决问题.【详解】解:(1)证明:是直径,,∵,,,,,又∵,(AAS).(2)结论:.理由如下:由(1)可得:,,,是直径,∴,,,又∵,∴,∴,,,,,.(3)解:设,,,,整理得,或(舍弃),,,又∵由(2)可知,,,∵,∴,∴,设,,,,,【点睛】本题综合考查了圆与相似,涉及了圆的性质、切线的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.24、(1);(1)1【分析】(1)根据方程有实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论