2023-2024学年河南省郑州市郑东新区九制实验学校九年级数学第一学期期末检测试题含解析_第1页
2023-2024学年河南省郑州市郑东新区九制实验学校九年级数学第一学期期末检测试题含解析_第2页
2023-2024学年河南省郑州市郑东新区九制实验学校九年级数学第一学期期末检测试题含解析_第3页
2023-2024学年河南省郑州市郑东新区九制实验学校九年级数学第一学期期末检测试题含解析_第4页
2023-2024学年河南省郑州市郑东新区九制实验学校九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省郑州市郑东新区九制实验学校九年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二次函数的顶点坐标是()A.(-2,3) B.(-2,-3) C.(2,3) D.(2,-3)2.对于二次函数,下列说法不正确的是()A.其图象的对称轴为过且平行于轴的直线.B.其最小值为1.C.其图象与轴没有交点.D.当时,随的增大而增大.3.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点,.若反比例函数经过点C,则k的值等于()A.10 B.24 C.48 D.504.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨5.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A. B. C. D.6.点A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.8.下列方程中是关于的一元二次方程的是()A. B. C. D.9.下列调查方式合适的是()A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式B.了解炮弹的杀伤力,采用全面调查的方式C.对中央台“新闻联播”收视率的调查,采用全面调查的方式D.对石家庄市食品合格情况的调查,采用抽样调查的方式10.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度二、填空题(每小题3分,共24分)11.已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.12.如图,在中,点是边的中点,⊙经过、、三点,交于点,是⊙的直径,是上的一个点,且,则___________.13.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为_____.14.已知中,,的面积为1.(1)如图,若点分别是边的中点,则四边形的面积是__________.(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是___________.15.如图,是⊙O上的点,若,则___________度.16.在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为_____.17.已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF18.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)将绕着点顺时针旋转后得到,请在图中画出;(2)若把线段旋转过程中所扫过的扇形图形围成一个圆锥的侧面,求该圆锥底面圆的半径(结果保留根号).20.(6分)用适当的方法解下列一元二次方程:(1)(2)21.(6分)已知抛物线与轴交于两点,与轴交于点.(1)求此抛物线的表达式及顶点的坐标;(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.①试用含的代数式表示的长;②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(8分)已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?23.(8分)先化简,再求值:,其中a=2.24.(8分)如图所示,在中,,,,点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.连接,设运动时间为.(1)当为何值时,?(2)设的面积为,求与的函数关系式,并求出当为何值时,取得最大值?的最大值是多少?25.(10分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.26.(10分)如图,已知直线的函数表达式为,它与轴、轴的交点分别为两点.(1)若的半径为2,说明直线与的位置关系;(2)若的半径为2,经过点且与轴相切于点,求圆心的坐标;(3)若的内切圆圆心是点,外接圆圆心是点,请直接写出的长度.

参考答案一、选择题(每小题3分,共30分)1、B【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:∵二次函数的顶点式为y=-2(x+2)2−3,

∴其顶点坐标为:(−2,−3).

故选:B.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点坐标特征是解答此题的关键.2、D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A、B、D三项,再根据抛物线的顶点和开口即可判断C项,进而可得答案.【详解】解:,所以抛物线的对称轴是直线:x=3,顶点坐标是(3,1);A、其图象的对称轴为过且平行于轴的直线,说法正确,本选项不符合题意;B、其最小值为1,说法正确,本选项不符合题意;C、因为抛物线的顶点是(3,1),开口向上,所以其图象与轴没有交点,说法正确,本选项不符合题意;D、当时,随的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.3、C【分析】由菱形的性质和锐角三角函数可求点,将点C坐标代入解析式可求k的值.【详解】解:如图,过点C作于点E,∵菱形OABC的边OA在x轴上,点,∴,∵.∴,∴∴点C坐标∵若反比例函数经过点C,∴故选C.【点睛】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.4、C【解析】试题分析:A.抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B.射击运动员射击一次,命中十环是随机事件,故B错误;C.在地球上,抛出的篮球会下落是必然事件,故C正确;D.明天会下雨是随机事件,故D错误;故选C.考点:随机事件.5、C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)==.故选C.6、B【分析】根据象限内点的坐标特点即可解答.【详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【点睛】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.7、A【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、不是整式方程,故本选项错误;B、当=0时,方程就不是一元二次方程,故本选项错误;C、由原方程,得,符合一元二次方程的要求,故本选项正确;D、方程中含有两个未知数,故本选项错误.故选C.【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.9、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:对空间实验室“天空二号”零部件的检查,采用全面调查的方式,A错误;了解炮弹的杀伤力,采用抽样调查的方式,B错误;对中央台“新闻联播”收视率的调查,采用抽样调查的方式,C错误;对石家庄市食品合格情况的调查,采用抽样调查的方式,D正确,故选:D.【点睛】本题考查全面调查与抽样调查,理解全面调查与抽样调查的特点是本题的解题关键.10、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.二、填空题(每小题3分,共24分)11、2或1【解析】分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=1cm.∴AB与CD之间的距离为1cm或2cm.故答案为2或1.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.12、1【分析】根据题意得到△BDC是等腰三角形,外角和定理可得∠ADC也就是要求的∠AFC.【详解】连接DE,∵CD是⊙的直径,∴∠DEC=90°,DE⊥BC,∵E是BC的中点,∴DE是BC的垂直平分线,则BD=CD,∴∠DCE=∠B=24°,∴∠ADC=∠DCE+∠B=1°,∴∠AFC=∠ADC=1°,故填:1.【点睛】本题考查了线段垂直平分线的性质、外角和定理、同弧所对的圆周角相等,综合性较强,是中考填空题、选择题的常见题型.13、=45【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=45场,依此等量关系列出方程.【详解】解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,故答案是:.【点睛】考查了由实际问题抽象出一元二次方程,本题的关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以1.14、31.5;26【分析】(1)证得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方及△ABC的面积为1,求得△ADE的面积,用大三角形的面积减去小三角形的面积,即可得答案;(2)利用△AFH∽△ADE得到,设,,则,解得,从而得到,然后计算两个三角形的面积差得到四边形DBCE的面积.【详解】(1)∵点D、E分别是边AB、AC的中点,

∴DE∥BC,

∴△ADE∽△ABC,

∵点D、E分别是边AB、AC的中点,

∴,∴,

∵,

∴,

∴;(2)如图,

根据题意得,∴,设,,∴,解得,∴,∴.

【点睛】本题考查了相似三角形的判定和性质:有两组角对应相等的两个三角形相似.利用相似三角形的面积比等于相似比的平方是解题的关键.15、130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.16、【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【详解】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案为.【点睛】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.17、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正确;由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正确;BM、DN、MN存在BM2+DN2=MN2的关系,故③错误.【详解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,

由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,

∵∠EAF=45°,

∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,

∴∠EAH=∠EAF=45°,

在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),

∴EH=EF,

∴∠AEB=∠AEF,

∴BE+BH=BE+DF=EF,故④正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,

∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,

∴∠ANM=∠AEB,

∴∠AEB=∠AEF=∠ANM;故②正确;BM、DN、MN满足等式BM2+DN2=MN2,而非BM+DN=MN,故③错误.故答案为①②④.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,熟记各性质并利用旋转变换作辅助线构造成全等三角形是解题的关键.18、1或5【分析】分类讨论:当点P在射线OA上时,过点P作PE⊥AB于点E,根据切线的性质得到PE=1cm,利用30度角所对的直角边等于斜边一半的性质的OP=2PE=2cm,求出⊙P移动的距离为4-2-1=1cm,由此得到⊙P运动时间;当点P在射线OB上时,过点P作PF⊥AB于点F,同样方法求出运动时间.【详解】当点P在射线OA上时,如图,过点P作PE⊥AB于点E,则PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移动的距离为4-2-1=1cm,∴运动时间为s;当点P在射线OB上时,如图,过点P作PF⊥AB于点F,则PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移动的距离为4+2-1=5cm,∴运动时间为s;故答案为:1或5.【点睛】此题考查动圆问题,圆的切线的性质定理,含30度角的直角边等于斜边一半的性质,解题中注意运用分类讨论的思想解答问题.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)先根据旋转变换确定A1、B1、C1,然后顺次连接即可;(2)线段BC旋转过程中扫过的面积为扇形BCC1的面积,然后求扇形的面积即可.【详解】解:(1)如图所示,所求;(2)在中,∵∴答:该圆锥底面圆的半径为.【点睛】本题考查了旋转变换以及扇形面积,根据旋转变换做出是解答本题的关键.20、(1);(2).【分析】(1)根据因式分解法求解方程即可.(2)根据公式,将系数代入即可.【详解】(1)原方程变形,即.∴或.∴.(2)∵,∴∴∴.【点睛】本题考查了一元二次方程的解法.21、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.【分析】(1)根据待定系数法即可求出抛物线的解析式,然后把一般式转化为顶点式即可得出抛物线的顶点坐标;(2)①先利用待定系数法求出直线的函数表达式,再设出点D、E的坐标,然后分点D在y轴右侧和y轴左侧利用或列式化简即可;②根据题意容易判断:点D在y轴左侧时,不存在这样的点;当点D在y轴右侧时,分或两种情况,设出E、F坐标后,列出方程求解即可;(3)先求得点M、N的坐标,然后连接CM,过点N作NG⊥CM交CM的延长线于点G,即可判断∠MCN=45°,则点C即为符合题意的一个点Q,所以另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,然后根据圆周角定理的推论、等腰直角三角形的性质和勾股定理即可求出CQ的长,进而可得结果.【详解】解:(1)∵抛物线与轴交于点,∴设抛物线的表达式为:,把点代入并求得:,∴抛物线的表达式为:,即,∴抛物线的顶点坐标为:;(2)①设直线的表达式为:,则,解得:,∴直线的表达式为:,设,则,当时,∴,当时,,综上:,②由题意知:当时,不存在这样的点;当时,或,∵,∴,∴,解得(舍去),∴,或,解得(舍去),(舍去),综上,直线能把分成面积之比为1:2的两部分,且点的坐标为;(3)∵点在抛物线上,∴,∴,连接MC,如图,∵C(0,6),M(1,6)∴MC⊥y轴,过点N作NG⊥CM交CM的延长线于点G,∵N(2,4),∴CG=NG=2,∴△CNG是等腰直角三角形,∴∠MCN=45°,则点C即为符合题意的一个点Q,∴另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,连接HN,∵,∴MN=,CM=1,∵,∴∠MHN=90°,则半径MH=NH=,∵∠MCQ=90°,∴MQ是直径,且,∴,∵OC=6,∴OQ=3,∴Q(0,3);综上,在轴上存在点,使,且点Q的坐标为:或.【点睛】本题是二次函数综合题,综合考查了待定系数法求一次函数和二次函数的解析式、函数图象上点的坐标特征、三角形的面积问题、一元二次方程的求解、圆周角定理及其推论、勾股定理和等腰直角三角形的判定和性质等知识,综合性强,难度较大,属于试卷的压轴题,熟练掌握待定系数法是解(1)题的关键,熟知函数图象上点的坐标特征、正确进行分类是解(2)题的关键,将所求点Q的坐标转化为圆的问题、灵活应用数形结合的思想是解(3)题的关键.22、(1)b=-4,c=5;(2)当x=2时,二次函数有最小值为1【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案.【详解】(1)把(0,5),(1,2)代入y=x2+bx+c得:,解得:,∴,;(2)由表格中数据可得:∵、时的函数值相等,都是2,∴此函数图象的对称轴为直线,∴当x=2时,二次函数有最小值为1.【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.23、,2【分析】先根据分式的运算顺序和运算法则化简原式,再将a=2代入计算即可;【详解】解:原式=;当a=2时,原式值=;【点睛】本题主要考查了分式的化简求值,掌握分式的运算顺序和运算法则是解题的关键.24、(1)(2)S=−(t−)2+,t=,S有最大值,最大值为.【分析】(1)利用分线段成比例定理构建方程即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题即可.【详解】(1)∵PQ⊥AC,∴∠AQP=∠C=90°,∴PQ∥BC,∴,在Rt△ACB中,AB=∴,解得t=,∴t为时,PQ⊥AC.(2)如图,作PH⊥AC于H.∵PH∥BC,∴,∴,∴PH=(5−t),∴S=•AQ•PH=×t×(5−t)=−t2+t=−(t−)2+,∵−<0,∴t=,S有最大值,最大值为.【点睛】本题考查平行线分线段成比例定理,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25、30°【分析】利用垂径定理和圆周角定理证得∠A=∠1=∠ABD,然后根据直角三角形两锐角互余即可求得∠1的度数.【详解】解:∵半径OD与弦AC垂直,∴,∴∠1=∠ABD,∵半径OD与弦AC垂直,∴∠ACB=90°,∴OD∥BC,∴∠1=∠D,∵∠A=∠D,∴∠A=∠1=∠ABD,∵∠A+∠ABC=90°,∴3∠1=90°,∴∠1=30°.【点睛】本题考查了垂径定理和和圆周角定理的推论,解决本题的关键是正确理解题意,熟练掌握垂径定理,能够理清各线段和角的关系.26、(1)直线AB与⊙O的位置关系是相离;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论