2023-2024学年吉林省长春市农安县九年级数学第一学期期末教学质量检测试题含解析_第1页
2023-2024学年吉林省长春市农安县九年级数学第一学期期末教学质量检测试题含解析_第2页
2023-2024学年吉林省长春市农安县九年级数学第一学期期末教学质量检测试题含解析_第3页
2023-2024学年吉林省长春市农安县九年级数学第一学期期末教学质量检测试题含解析_第4页
2023-2024学年吉林省长春市农安县九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年吉林省长春市农安县九年级数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.反比例函数的图像经过点,,则下列关系正确的是()A. B. C. D.不能确定2.天津市一足球场占地163000平方米,将163000用科学记数法表示应为(

)A.163×103 B.16.3×104 C.1.63×105 D.0.163×1063.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.4.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.15.下列几何体的三视图相同的是(

)A.圆柱

B.球

C.圆锥

D.长方体6.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.87.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对9.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽次也可能没有抽到一等奖C.抽次奖必有一次抽到一等奖D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖10.如图,,、,…是分别以、、,…为直角顶点,一条直角边在轴正半轴上的等腰直角三角形,其斜边的中点,,,…均在反比例函数()的图象上.则的值为()A. B.6 C. D.二、填空题(每小题3分,共24分)11.如图,是的直径,是的切线,交于点,,,则______.12.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.13.一元二次方程的一个根为,另一个根为_____.14.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.15.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有_____只虾.16.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.17.如图,在坐标系中放置一菱形,已知,,先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转2019次,点的落点依次为,,,…,则的坐标为__________.18.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.三、解答题(共66分)19.(10分)如图,四边形内接于⊙,是⊙的直径,,垂足为,平分.(1)求证:是⊙的切线;(2),,求的长.20.(6分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?21.(6分)如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE(1)求证:△DBE是等腰三角形(2)求证:△COE∽△CAB22.(8分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.用“转化”的数学思想,我们还可以解一些新的方程.例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:.因为,且,所以不是原方程的根,是原方程的解.(1)问题:方程的解是,__________,__________;(2)拓展:求方程的解.23.(8分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.(1)求B、C的坐标;(2)当轴时,求抛物线的函数表达式;(3)①求动点所成的图像的函数表达式;②连接,求的最小值.24.(8分)如图,在中,,以为直径的交于,点在线段上,且.(1)求证:是的切线.(2)若,求的半径.25.(10分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).26.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点的横坐标结合反比例函数图象上点的坐标特征即可求出y1、y2的值,比较后即可得出结论.【详解】解:∵反比例函数的图象经过点,,

∴y1=3,y2=,

∵3>,

∴.

故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,根据点的横坐标利用反比例函数图象上点的坐标特征求出点的纵坐标是解题的关键.2、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将163000用科学记数法表示为:1.63×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、A【分析】画树状图(用、、分别表示“图书馆、博物馆、科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】画树状图为:(用分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率.故选A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.4、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.5、B【解析】试题分析:选项A、圆柱的三视图,如图所示,不合题意;选项B、球的三视图,如图所示,符合题意;选项C、圆锥的三视图,如图所示,不合题意;选项D、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.6、C【解析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.7、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.8、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.9、B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A.“抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D.“抽到一等奖的概率为”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.10、A【分析】过点分别作x轴的垂线,垂足分别为,得出△为等腰直角三角形,进而求出,再逐一求出,…的值,即可得出答案.【详解】如图,过点分别作x轴的垂线,垂足分别为∵△为等腰直角三角形,斜边的中点在反比例函数的图像上∴(2,2),即∴设,则此时(4+a,a)将(4+a,a)代入得a(4+a)=4解得或(负值舍去)即同理,,…,∴故答案选择A.【点睛】本题考查的是反比例函数的图像与性质以及反比例函数上点的特征,难度系数较大,解题关键是根据点在函数图像上求出y的值.二、填空题(每小题3分,共24分)11、【分析】因是的切线,利用勾股定理即可得到AB的值,是的直径,则△ABC是直角三角形,可证得△ABC∽△APB,利用相似的性质即可得出BC的结果.【详解】解:∵是的切线∴∠ABP=90°∵,∴AB2+BP2=AP2∴AB=∵是的直径∴∠ACB=90°在△ABC和△APB中∴△ABC∽△APB∴∴∴故答案为:【点睛】本题主要考查的是圆的性质以及相似三角形的性质和判定,掌握以上几点是解此题的关键.12、1.【分析】求出方程的解,再看看是否符合三角形三边关系定理即可解答.【详解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,则x﹣2=0或x﹣7=0,解得x=2或x=7,当x=2时,三角形的周长为2+3+4=1;当x=7时,3+4=7,不能构成三角形;故答案为:1.【点睛】本题考查解一元二次方程和三角形三边关系定理的应用,解题的关键是确定三角形的第三边.13、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,∴或,解得:;,∴一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.14、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴,解得:x=2,故黑球的个数为2个.故答案为2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.15、1.【分析】设该虾塘里约有x只虾,根据题意列出方程,解之可得答案.【详解】解:设此鱼塘内约有鱼x条,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,∴该虾塘里约有1只虾,故答案为:1.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.16、或14【解析】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长.【详解】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键.17、(2326,0)【分析】根据题意连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移2.由于2029=336×6+3,因此点向右平移2322(即336×2)即可到达点,根据点的坐标就可求出点的坐标.【详解】解:连接AC,如图所示:∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=2,∴AC=2.画出第5次、第6次、第7次翻转后的图形,如上图所示.由图可知:每翻转6次,图形向右平移2.∵2029=336×6+3,∴点向右平移2322(即336×2)到点.∵的坐标为(2,0),∴的坐标为(2+2322,0),∴的坐标为(2326,0).故答案为:(2326,0).【点睛】本题考查菱形的性质、等边三角形的判定与性质等知识,考查操作、探究、发现规律的能力,发现“每翻转6次,图形向右平移2”是解决本题的关键.18、2【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴2,∴AF=2GF=4,∴AG=1.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=2.故答案为:2.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OA,根据角平分线的定义及等腰三角形的性质得出,从而有,再通过得出,即,则结论可证;(2)根据得,再利用角平分线的定义和直角三角形两锐角互余得出,然后利用含30°的直角三角形的性质和勾股定理即可求出AE的长度.【详解】(1)证明:连接,平分,.,,,,,,,,∴AE是⊙O的切线;(2)是直径,.又,,.∵DA平分,,.在中,,.在中,,,.【点睛】本题主要考查角平分线的定义,等腰三角形的性质,切线的判定,勾股定理,含30°的直角三角形的性质,掌握角平分线的定义,等腰三角形的性质,切线的判定,勾股定理,含30°的直角三角形的性质是解题的关键.20、(1)BP=2或BP=12;(2)当BP的值为2,12或5.1时,两三角形相似.【解析】试题分析:分△ABP∽△PCD和△ABP∽△DCP两种情况,根据相似三角形的性质列出比例式,计算即可.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.1.综合以上可知,当BP的值为2,12或5.1时,两三角形相似.考点:相似三角形的性质.21、(1)见解析;(2)见解析【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【详解】(1)连接OD、OE,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.【点睛】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.22、(1);(2)【分析】(1)利用因式分解法,即可得出结论;(2)先方程两边平方转化成整式方程,再求一元二次方程的解,最后必须检验.【详解】(1)∵x3+x2-2x=0,∴x(x-1)(x+2)=0∴x=0或x-1=0或x+2=0,∴x1=0,x2=1,x3=-2,故答案为1,-2;;(2),()给方程两边平方得:解得:,(不合题意舍去),∴是原方程的解;【点睛】主要考查了根据材料提供的方法解高次方程,无理方程,理解和掌握材料提供的方法是解题的关键.23、(1)、;(2);(3)①;②.【分析】(1),令,则或4,即可求解;(2)当轴时,则,则,故点,即可求解;(3)构造一线三垂直相似模型由,则,解得:,,故点,,即可求解.【详解】解:(1)当时,即,解得或4,故点、的坐标分别为:、;(2)∵等边三角形,∴,∴当轴时,,∴,故点,即,解得:,故抛物线的表达式为:;(3)①

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论