2023-2024学年江苏省泰州市靖江外国语学校数学九年级第一学期期末检测模拟试题含解析_第1页
2023-2024学年江苏省泰州市靖江外国语学校数学九年级第一学期期末检测模拟试题含解析_第2页
2023-2024学年江苏省泰州市靖江外国语学校数学九年级第一学期期末检测模拟试题含解析_第3页
2023-2024学年江苏省泰州市靖江外国语学校数学九年级第一学期期末检测模拟试题含解析_第4页
2023-2024学年江苏省泰州市靖江外国语学校数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省泰州市靖江外国语学校数学九年级第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,在中,与相交于点,为的中点,连接并延长交于点,则与的面积比值为()A. B. C. D.2.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是()A.k≥ B.k> C.k<﹣ D.k<3.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.4.如图,中,,将绕着点旋转至,点的对应点点恰好落在边上.若,,则的长为()A. B. C. D.5.若,则一次函数与反比例函数在同一坐标系数中的大致图象是()A. B.C. D.6.如图,在中,,,,则A. B. C. D.7.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55° B.70° C.125° D.145°8.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.9 B.12π﹣9 C. D.6π﹣9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>010.若二次函数的图象如图,与x轴的一个交点为(1,0),则下列各式中不成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若点是双曲线上的点,则__________(填“>”,“<”或“=”)12.如图示一些小正方体木块所搭的几何体,从正面和从左面看到的图形,则搭建该几何体最多需要块正方体木块.13.二次函数y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,则关于x的一元二次方程﹣x2+bx+c=0的根为_____.14.如图,在中,,,,则的长为________.15.已知正方形ABCD的对角线长为8cm,则正方形ABCD的面积为_____cm1.16.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.17.长度等于6的弦所对的圆心角是90°,则该圆半径为_____.18.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.三、解答题(共66分)19.(10分)阅读下列材料,并完成相应的任务.任务:(1)上述证明过程中的“依据1”和“依据2”分别指什么?依据1:依据2:(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:(请写出定理名称).(3)如图(3),四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是弧BD的中点,求AC的长.20.(6分)如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.(1)求点A的坐标;(2)求抛物线的解析式;(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.21.(6分)在一个不透明的袋子里有1个红球,1个黄球和个白球,它们除颜色外其余都相同,从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求的值.22.(8分)如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD24,AMMC,求的值.23.(8分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.24.(8分)计算:(1)解不等式组(2)化简:25.(10分)为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)26.(10分)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.(1)求证:BD=CD.(2)若弧DE=50°,求∠C的度数.(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平行四边形的性质得到OB=OD,利用点E是OD的中点,得到DE:BE=1:3,根据同高三角形面积比的关系得到S△ADE:S△ABE=1:3,利用平行四边形的性质得S平行四边形ABCD=2S△ABD,由此即可得到与的面积比.【详解】在中,OB=OD,∵为的中点,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四边形ABCD=2S△ABD,∴与的面积比为3:8,故选:C.【点睛】此题考查平行四边形的性质,同高三角形面积比,熟记平行四边形的性质并熟练运用解题是关键.2、D【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,于是得到1﹣3k>0,然后解不等式即可.【详解】∵x1<0<x2,y1<y2,∴反比例函数图象分布在第一、三象限,∴1﹣3k>0,∴k<.故选:D.【点睛】此题考查反比例函数的性质,根据点的横纵坐标的关系即可确定函数图象所在的象限,由此得到k的取值范围.3、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,

∴∠C'CA=∠CAB=64°,

∵将△ABC绕点A旋转到△AB′C′的位置,

∴AC=AC',∠BAB'=∠CAC',

∴∠ACC'=∠C'CA=64°,

∴∠C'AC=180°−2×64°=52°,

故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.4、A【分析】先在直角三角形ABC中,求出AB,BC,然后证明△ABD为等边三角形,得出BD=AB=2,再根据CD=BC-BD即可得出结果.【详解】解:在Rt△ABC中,AC=2,∠B=60°,∴BC=2AB,BC2=AC2+AB2,∴4AB2=AC2+AB2,

∴AB=2,BC=4,

由旋转得,AD=AB,

∵∠B=60°,∴△ABD为等边三角形,

∴BD=AB=2,

∴CD=BC-BD=4-2=2,

故选:A.【点睛】此题主要考查了旋转的性质,含30°角的直角三角形的性质,勾股定理以及等边三角形的判定与性质,解本题的关键是综合运用基本性质.5、C【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【详解】解:.A.根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,

B.根据反比例函数可判断ab<0,故不符合题意,

C.根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,

D.根据反比例函数可判断ab<0,故不符合题意.

故选:C.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质是解决问题的关键.6、A【解析】先利用勾股定理求出斜边AB,再求出sinB即可.【详解】∵在中,,,,∴,∴.故答案为A.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.7、C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.8、A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴CD=3,∴S弓形AD=S扇形ADO﹣S△ADO6×36π﹣9,∴S弓形OD=6π﹣9,阴影部分的面积=S扇形BDO﹣S弓形OD(6π﹣9)=9.故选:A.【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.9、B【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10、B【分析】根据二次函数图象开口方向与坐标轴的交点坐标特点,利用排除法可解答.【详解】解:∵抛物线与x轴有两个交点,∴,故A正确,不符合题意;∵函数图象开口向下,

∴a<0,∵抛物线与y轴正半轴相交,∴c>0,∵抛物线对称轴在y轴的右侧,∴>0,∴b>0,∴abc<0,故B错误,符合题意;又∵图象与x轴的一个交点坐标是(1,0),

∴将点代入二次函数y=ax2+bx+c得a+b+c=0,故C正确,不符合题意,

∵当x=-1时,y=a-b+c,由函数图象可知,y=a-b+c<0,故D正确,不符合题意,

故选:B.【点睛】本题考查二次函数图象上点的坐标特征,是基础题型,也是常考题型.二、填空题(每小题3分,共24分)11、>【分析】根据得出反比例图象在每一象限内y随x的增大而减小,再比较两点的横坐标大小,即可比较两点的纵坐标大小.【详解】解:∵,,∴反比例函数的图象在第一、三象限内,且在每一象限内y随x的增大而减小,∵点是双曲线上的点,且1<2,∴,故答案为:>.【点睛】本题考查了反比例函数的图象与性质,掌握k>0时,反比例函数图象在每一象限内y随x的增大而减小是解题的关键.12、16【解析】根据俯视图标数法可得,最多有1块;故答案是1.点睛:三视图是指一个立体图形从上面、正面、侧面(一般为左侧)三个方向看到的图形,首先我们要分清三个概念:排、列、层,比较好理解,就像我们教室的座位一样,横着的为排,竖着的为列,上下的为层,如图所示的立体图形,共有两排、三列、两层.仔细观察三视图,可以发现在每一图中,并不能同时看到排、列、层,比如正视图看不到排,这个很好理解,比如在教室里,如果第一排的同学个子非常高,那么后面的同学都被挡住了,我们无法从正面看到后面的同学,也就无法确定有几排.所以,我们可以知道正视图可看到列和层,俯视图可看到排和层列,侧视图可看到排和层.13、x1=1,x2=﹣1.【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与x轴的另一个交点,从而可以得到一元二次方程-x2+bx+c=0的解,本题得以解决.【详解】由图象可得,抛物线y=﹣x2+bx+c与x轴的一个交点为(﹣1,0),对称轴是直线x=﹣1,则抛物线与x轴的另一个交点为(1,0),即当y=0时,0=﹣x2+bx+c,此时方程的解是x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.15、31【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.【详解】解:∵四边形ABCD为正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面积=×AC×BD=31cm1,故答案为:31.【点睛】本题考查了求解菱形的面积,属于简单题,熟悉求解菱形面积的特殊方法是解题关键.16、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.17、1【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=1,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:1.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.18、x=4【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.三、解答题(共66分)19、(1)同弧所对的圆周角相等;两角分别对应相等的两个三角形相似(2)勾股定理(3)AC=【分析】(1)根据圆周角定理的推论以及三角形相似的判定定理,即可得到答案;(2)根据矩形的性质和托勒密定理,即可得到答案;(3)连接BD,过点C作CE⊥BD于点E.由四边形ABCD内接于⊙O,点C是弧BD的中点,可得∆BCD是底角为30°的等腰三角形,进而得BD=2DE=CD,结合托勒密定理,列出方程,即可求解.【详解】(1)依据1指的是:同弧所对的圆周角相等;依据2指的是:两角分别对应相等的两个三角形相似.故答案是:同弧所对的圆周角相等;两角分别对应相等的两个三角形相似;(2)∵当圆内接四边形ABCD是矩形时,∴AC=BD,BC=AD,AB=CD,∵由托勒密定理得:AC·BD=AB·CD+BC·AD,∴.故答案是:勾股定理;(3)如图,连接BD,过点C作CE⊥BD于点E.∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵点C是弧BD的中点,∴弧BC=弧CD,∴BC=CD,∴∠CBD=30°.在Rt△CDE中,DE=CD·cos30°,∴DE=CD,∴BD=2DE=CD.由托勒密定理得:AC·BD=AB·CD+BC·AD.∴AC·CD=3CD+5CD.∴AC=.【点睛】本题主要考查圆的内接四边形的性质与相似三角形的综合,添加辅助线,构造底角为30°的等腰三角形,是解题的关键.20、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【详解】(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.21、2【分析】根据“摸到白球的频率稳定于0.5左右”利用概率公式列方程计算可得;【详解】解:根据题意,得,解得答:的值是2.【点睛】本题考查了用频率估计概率和概率公式,掌握概率公式是解题的关键.22、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.(2)欲证明PD是⊙O的切线,只要证明OD⊥PA即可解决问题;(3)连接CD.由(2)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,,可得,推出,推出,,由,可得,再利用全等三角形的性质求出MD即可解决问题;【详解】(1)证明:连接、、.∵,,∴,∴,∴,(2)∴,∴,,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴是的切线.(3)连接.由(1)可知:,∵,∴,在中,,∴,∴,∴,,∵,∴,∵是的中点,∴,∴点是的中点,∴,∵是的直径,∴,在中,∵,,∴,∵,∴,,∴,∴.【点睛】此题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质,解题关键在于构造辅助线,相似三角形解决问题.23、(1)见解析;(2)见解析;(3)8米【解析】【试题分析】(1)点B在地面上的投影为M.故连接MB,并延长交OP于点P.点P即为所求;(2)连接PD,并延长交OM于点N.CN即为所求;(3)根据相似三角形的性质,易得:,即,解得.从而得求.【试题解析】如图:如图:,∽,,即,解得.即路灯灯泡P到地面的距离是8米.

【方法点睛】本题目是一道关于中心投影的问题,涉及到如何确定点光源,相似三角形的判定,相似三角形的性质,难度中等.24、(1);(2).【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集;(2)根据分式的减法法则即可得.【详解】(1),解不等式①得:,解不等式②得:,则不等式组的解集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论