2023-2024学年江苏省南通市海安市十校联考九年级数学第一学期期末联考试题含解析_第1页
2023-2024学年江苏省南通市海安市十校联考九年级数学第一学期期末联考试题含解析_第2页
2023-2024学年江苏省南通市海安市十校联考九年级数学第一学期期末联考试题含解析_第3页
2023-2024学年江苏省南通市海安市十校联考九年级数学第一学期期末联考试题含解析_第4页
2023-2024学年江苏省南通市海安市十校联考九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省南通市海安市十校联考九年级数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形 B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴 D.圆的对称中心是它的圆心2.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交3.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<24.如图是二次函数图象的一部分,图象过点,对称轴为直线,给出四个结论:①;②;③若点、为函数图象上的两点,则;④关于的方程一定有两个不相等的实数根.其中,正确结论的是个数是()A.4 B.3 C.2 D.15.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C. D.126.如图,在中,,,,则的面积是()A. B. C. D.7.投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()A.p一定等于B.p一定不等于C.多投一次,p更接近D.投掷次数逐步增加,p稳定在附近8.在中,,,则的值是()A. B. C. D.9.关于反比例函数,下列说法正确的是()A.点在它的图象上 B.它的图象经过原点C.当时,y随x的增大而增大 D.它的图象位于第一、三象限10.在同一坐标系内,一次函数与二次函数的图象可能是A. B. C. D.11.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上12.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40° B.60° C.80° D.100°二、填空题(每题4分,共24分)13.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为

________.14.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)15.已知反比例函数的图像上有两点M,N,且,,那么与之间的大小关系是_____________.16.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.17.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.18.如图,将二次函数y=(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.三、解答题(共78分)19.(8分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.(1)求当为多少时每天的利润是1350元?(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?20.(8分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?21.(8分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.22.(10分)甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)23.(10分)已知抛物线经过点和点.求抛物线的解析式;求抛物线与轴的交点的坐标(注:点在点的左边);求的面积.24.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.25.(12分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.26.(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大2、D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1.此时和半径1的大小不确定,则直线和圆相交、相切都有可能.故选D.点睛:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.3、C【解析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.4、C【分析】①根据抛物线开口方向、对称轴及与y轴交点情况可判断;②根据抛物线对称轴可判断;③根据点离对称轴的远近可判断;④根据抛物线与直线交点个数可判断.【详解】由图象可知:开口向下,故,

抛物线与y轴交点在x轴上方,故>0,

∵对称轴,即同号,

∴,

∴,故①正确;∵对称轴为,

∴,

∴,故②不正确;∵抛物线是轴对称图形,对称轴为,点关于对称轴为的对称点为当时,

此时y随的增大而减少,

∵30,

∴,故③错误;∵抛物线的顶点在第二象限,开口向下,与轴有两个交点,

∴抛物线与直线有两个交点,

∴关于的方程有两个不相等的实数根,所以④正确;综上:①④正确,共2个;故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握函数图象及性质,能够从函数图象获取信息,结合函数解析式进行求解是关键.5、A【解析】利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.【详解】连接DO,EO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=3,AF=AE=4又∵∠C=90°,∴四边形OECD是矩形,又∵EO=DO,∴矩形OECD是正方形,设EO=x,则EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,∴BC=3,AC=4,∴S△ABC=×3×4=6,故选A.【点睛】此题主要考查了三角形内切圆与内心,得出四边形OECF是正方形是解题关键.6、C【分析】在Rt△ABC中,求出BC,AC即可解决问题.【详解】解:在Rt△ACB中,∵∠C=90°,AB=8cm,

∴sinA==,

∴BC=6(cm),

∴AC=(cm),

∴S△ABC=•BC•AC=×6×2=6(cm2).

故选:C.【点睛】本题考查解直角三角形的应用,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近.故选:D.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.8、C【分析】作出图形,设BC=2k,AB=5k,利用勾股定理列式求出AC,再根据锐角的正弦等于对边比斜边,列式即可得解.【详解】解:如图,∴设BC=2k,AB=5k,∴由勾股定理得∴故选C.【点睛】本题考查了锐角三角函数的定义,利用“设k法”表示出三角形的三边求解更加简便.9、D【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【详解】解:A、把(2,-1)代入,得1=-1不成立,故选项错误;B、反比例函数图像不经过原点,故选项错误;C、当x>0时,y随x的增大而减小,故选项错误.D、∵k=2>0,∴它的图象在第一、三象限,故选项正确;故选D.【点睛】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10、C【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,

所以,两个函数图象与y轴相交于同一点,故B、D选项错误;

由A、C选项可知,抛物线开口方向向上,

所以,a>0,

所以,一次函数y=ax+b经过第一三象限,

所以,A选项错误,C选项正确.

故选C.11、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.12、C【分析】利用圆周角与圆心角的关系得出∠COB=40°,再根据垂径定理进一步可得出∠DOB=∠COB,最后即可得出答案.【详解】∵∠A=20°,∴∠COB=2∠A=40°,∵CD⊥AB,OC=OD,∴∠DOB=∠COB=40°,∴∠COD=∠DOB+∠COB=80°.故选:C.【点睛】本题主要考查了圆周角、圆心角与垂径定理的综合运用,熟练掌握相关概念是解题关键.二、填空题(每题4分,共24分)13、​【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=.故答案为:【点睛】本题考查概率的计算,题目比较简单.14、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.15、【分析】根据反比例函数特征即可解题。【详解】∵∴∵,∴,∴故答案为【点睛】本题考查反比例函数上点的坐标特征,注意反比例函数是分别在各自象限内存在单调性。16、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【点睛】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.17、1【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB=50,CD=15,CE=18,即,,解得x=1,经检验,x=1是原方程的解,即高为50m的旗杆的影长为1m.故答案为:1.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.18、y=0.2(x-2)+2【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=1,∴A(1,1),B(4,1),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=1.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=1AA′=12,∴AA′=4,即将函数y=(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+2.故答案为y=0.2(x﹣2)2+2.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.三、解答题(共78分)19、(1)时,每天的利润是1350元;(2)单价为60元时,每天利润最大,最大利润是1600元【分析】(1)根据每天的利润=单件的利润×销售数量列出方程,然后解方程即可;(2)根据每天的利润=单件的利润×销售数量表示出每天的销售利润,再利用二次函数的性质求最大值即可.【详解】(1)由题意得,即,解得:,∵物价部门要求每件不得高于60元,∴,即时每天的利润是1350元;(2)由题意得:,∵抛物线开口向下,对称轴为,在对称轴左侧,随的增大而增大,且,∴当时,(元),当时,售价为(元),∴单价为60元时,每天利润最大,最大利润是1600元.【点睛】本题主要考查一元二次方程和二次函数的应用,掌握一元二次方程的解法和二次函数的性质是解题的关键.20、(1)BP=2或BP=12;(2)当BP的值为2,12或5.1时,两三角形相似.【解析】试题分析:分△ABP∽△PCD和△ABP∽△DCP两种情况,根据相似三角形的性质列出比例式,计算即可.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.1.综合以上可知,当BP的值为2,12或5.1时,两三角形相似.考点:相似三角形的性质.21、a=﹣2【分析】根据一元二次方程的解的定义将x=1代入方程即可求出答案.【详解】解:将x=1代入(a﹣2)x2+(a2﹣3)x﹣a+1=0,得(a﹣2)+(a2﹣3)﹣a+1=0,∴a2﹣4=0,∴a=±2,由于a﹣2≠0,故a=﹣2.【点睛】本题考查一元二次方程的解,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.22、.【解析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可.【详解】画树状图为:由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种,所以甲、丙两人成为比赛选手的概率为=.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1);(2)点,点;(3)6.【分析】(1)将点和点代入即可求出解析式;(2)令y=0,解出的x的值即可得到点A、B的坐标;(3)根据点坐标求得,代入面积公式计算即可.【详解】(1)把点和点代入得解得所以抛物线的解析式为:;(2)把代入,得,解得,点在点的左边,点,点;(3)连接AC、BC,由题意得,.【点睛】此题考查待定系数法求二次函数的解析式,二次函数图形与一元二次方程的关系,利用点坐标求图象中三角形的面积.24、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,)【分析】(1)先利用三角函数求出OD,得出点A坐标,进而求出反比例函数解析式,进而求出点B坐标,将点A,B坐标代入直线解析式中,建立方程组,求解即可得出结论;(2)根据图象直接得出结论;(3)设出点E坐标,进而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三种情况,建立方程求解即可得出结论.【详解】∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣,∵点B(n,﹣2)在反比例函数y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴,∴,∴一次函数的解析式为y=﹣x+1;(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①当OA=OE时,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②当OA=AE时,5=,∴a=8或a=0(舍),∴P(0,8),③当OE=AE时,|a|=,∴a=,∴P(0,),即:满足条件的点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,).【点睛】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数,等腰三角形的性质,用方程的思想解决问题是解本题的关键.25、(1)见解析;(2)125【解析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【详解】(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵12•OC•CD=12•OD•∴CF=125∵AC平分∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论