2023-2024学年河南省商丘市柘城县数学九上期末综合测试模拟试题含解析_第1页
2023-2024学年河南省商丘市柘城县数学九上期末综合测试模拟试题含解析_第2页
2023-2024学年河南省商丘市柘城县数学九上期末综合测试模拟试题含解析_第3页
2023-2024学年河南省商丘市柘城县数学九上期末综合测试模拟试题含解析_第4页
2023-2024学年河南省商丘市柘城县数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省商丘市柘城县数学九上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.把方程x(x+2)=5(x-2)化成一般式,则a、b、c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,22.要使分式有意义,则x应满足的条件是()A.x<2 B.x≠2 C.x≠0 D.x>23.如图,动点A在抛物线y=-x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A作AC⊥l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3 B.3≤BD≤6 C.1≤BD≤6 D.2≤BD≤64.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35° B.45° C.55° D.65°5.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A. B. C. D.6.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A. B.C. D.7.如图,点,,都在上,,则等于()A. B. C. D.8.已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为()A.(6,8) B.(﹣6,8) C.(﹣6,﹣8) D.(6,﹣8)9.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个10.将0.000102用科学记数法表示为()A. B. C. D.11.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.1612.把二次函数化成的形式是下列中的()A. B.C. D.二、填空题(每题4分,共24分)13.分解因式:__________.14.若是方程的一个根,则代数式的值等于______.15.抛物线y=(x﹣3)2﹣2的顶点坐标是_____.16.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是.17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.18.将一副三角尺如图所示叠放在一起,则的值是.三、解答题(共78分)19.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.20.(8分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.21.(8分)数学兴趣小组对矩形面积为9,其周长m的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy=9,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象.函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.22.(10分)如图,在四边形ABCD中,AD∥BC,AD=2BC,E为AD的中点,连接BD,BE,∠ABD=90°(1)求证:四边形BCDE为菱形.(2)连接AC,若AC⊥BE,BC=2,求BD的长.23.(10分)有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.24.(10分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?25.(12分)如图,在中,,为上一点,,.(1)求的长;(2)求的值.26.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.

参考答案一、选择题(每题4分,共48分)1、A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式.2、B【解析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x﹣2≠1,∴x≠2,故选B.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.3、D【分析】根据题意先利用配方法得到抛物线的顶点坐标为(1,4),再根据矩形的性质得BD=AC,由于2≤AC≤1,从而进行分析得到BD的取值范围.【详解】解:∵,∴抛物线开口向下,顶点坐标为(1,4),∵四边形ABCD为矩形,∴BD=AC,∵直线l经过点(0,1),且与y轴垂直,抛物线y=-x2+2x+3(0≤x≤3),∴2≤AC≤1,∴另一对角线BD的取值范围为:2≤BD≤1.故选:D.【点睛】本题考查矩形的性质与二次函数图象上点的坐标特征,注意掌握二次函数图象上点的坐标满足其解析式.4、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案为A.【点睛】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.5、A【分析】直接利用已知数据可得xy=100,进而得出答案.【详解】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:.故选A.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.6、C【分析】根据“当月的生产量上月的生产量(1增长率)”即可得.【详解】由题意得:11月份的生产量为万幅12月份的生产量为万幅则故选:C.【点睛】本题考查了列一元二次方程,读懂题意,正确求出12月份的生产量是解题关键.7、C【分析】连接OC,根据等边对等角即可得到∠B=∠BCO,∠A=∠ACO,从而求得∠ACB的度数,然后根据圆周角定理即可求解.【详解】连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO,∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选:C.【点睛】本题考查了圆周角定理,正确作出辅助线,求得∠ACB的度数是关键.8、D【分析】根据P在第二象限可以确定x,y的符号,再根据|x|=6,|y|=8就可以得到x,y的值,得出P点的坐标,进而求出点P关于原点的对称点的坐标.【详解】∵|x|=6,|y|=8,∴x=±6,y=±8,∵点P在第二象限,∴x<0,y>0,∴x=﹣6,y=8,即点P的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D.【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律.解决本题的关键是掌握好对称点的坐标规律:

(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;

(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;

(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.10、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4,

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、D【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.12、C【分析】先提取二次项系数,然后再进行配方即可.【详解】.故选:C.【点睛】考查了将一元二次函数化成y=a(x-h)2+k的形式,解题关键是正确配方.二、填空题(每题4分,共24分)13、【分析】提取公因式a进行分解即可.【详解】解:a2−5a=a(a−5).故答案是:a(a−5).【点睛】本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.14、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.15、(3,﹣2)【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【详解】解:抛物线y=(x﹣3)2﹣2的顶点坐标是(3,﹣2).故答案为(3,﹣2).【点睛】此题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.16、6米.【解析】试题分析:在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.试题解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考点:解直角三角形的应用.17、1【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.18、【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.三、解答题(共78分)19、(1)见解析;(2)125【解析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【详解】(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵12•OC•CD=12•OD•∴CF=125∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=125【点睛】本题主要考查平行线的判定、角平分线的性质,熟练掌握这些知识点是解答的关键.20、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长==.【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.21、(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+整理得:﹣mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,由y=﹣x+得:3=﹣3+m,解得:m=1,故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+并整理得:x²﹣mx+9=0,∵△=m²﹣4×9,∴0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.22、(1)见解析;(2)【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)连接AC,可证AB=BC,由勾股定理可求出BD=.【详解】(1)证明:∵∠ABD=90°,E是AD的中点,∴BE=DE=AE,∵AD=2BC,∴BC=DE,∵AD∥BC,∴四边形BCDE为平行四边形,∵BE=DE,∴四边形BCDE为菱形;(2)连接AC,如图,∵由(1)得BC=BE,AD∥BC,∴四边形ABCE为平行四边形,∵AC⊥BE,∴四边形ABCE为菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD===.【点睛】本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法23、(1)图见解析,概率为;(2)不公平,理由见解析【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【详解】(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平.【点睛】此题主要考查概率的求解,解题的关键是根据题意画出树状图进行求解.24、每辆车需降价2万元【分析】设每辆车需降价万元,根据每辆汽车每降5000元,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论