2023-2024学年安徽省瑶海区数学九年级第一学期期末经典模拟试题含解析_第1页
2023-2024学年安徽省瑶海区数学九年级第一学期期末经典模拟试题含解析_第2页
2023-2024学年安徽省瑶海区数学九年级第一学期期末经典模拟试题含解析_第3页
2023-2024学年安徽省瑶海区数学九年级第一学期期末经典模拟试题含解析_第4页
2023-2024学年安徽省瑶海区数学九年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省瑶海区数学九年级第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似 B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外 D.直径所对的圆周角为直角2.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.3.将抛物线向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A. B.C. D.4.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.5.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.: B.2:3 C.4:9 D.16:816.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=257.已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是().A.1 B.2 C.3 D.48.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为10.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.411.如图,已知ΔABC中,AE交BC于点D,∠C=∠E,AD:DE=2:3,AE=10,BD=5,则DC的长是()A. B. C. D.12.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,则ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1 C.x=-3 D.x=-2二、填空题(每题4分,共24分)13.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.14.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.15.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_____.16.如果一元二次方程有两个相等的实数根,那么是实数的取值为________.17.如图,A是反比例函数y=(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=的图象经过点B1,则k的值是_____.18.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.三、解答题(共78分)19.(8分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.20.(8分)如图,在平面直角坐标系中,抛物线过点,动点P在线段上以每秒2个单位长度的速度由点运动到点停止,设运动时间为,过点作轴的垂线,交直线于点,交抛物线于点.连接,是线段的中点,将线段绕点逆时针旋转得线段.(1)求抛物线的解析式;(2)连接,当为何值时,面积有最大值,最大值是多少?(3)当为何值时,点落在抛物线上.21.(8分)如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若AE=5,AC=4,求BE的长.22.(10分)如图,已知,直线垂直平分交于,与边交于,连接,过点作平行于交于点,连.(1)求证:;(2)求证:四边形是菱形;(3)若,求菱形的面积.23.(10分)如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.24.(10分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.25.(12分)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由26.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t秒.(1)当t=2.5s时,判断直线AB与⊙P的位置关系,并说明理由.(2)已知⊙O为Rt△ABC的外接圆,若⊙P与⊙O相切,求t的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B、相似三角形的对应角相等是必然事件,故不符合题意;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件,故不符合题意;D、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识.2、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.3、D【分析】先得到抛物线y=x2-2的顶点坐标为(0,-2),再把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【详解】解:抛物线y=x2-2的顶点坐标为(0,-2),把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),

所以平移后抛物线的解析式为y=(x+3)2+1,

故选:D.【点睛】本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式,然后把抛物线的平移问题转化为顶点的平移问题.4、A【详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.5、B【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为:=.故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.6、C【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=1.故选:C.【点睛】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7、B【分析】根据a的符号分类讨论,分别画出对应的图象,根据二次函数的图象逐一分析,找出所有情况下都正确的结论即可.【详解】解:当a>0时,即抛物线的开口向上∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;当a<0时,即抛物线的开口向下∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;综上所述:①错误;②正确;③正确;④错误,正确的有2个故选B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系和分类讨论的数学思想是解决此题的关键.8、D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程有两个不相同的实数根,∴解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9、C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A、由原方程,得,等式的两边同时加上一次项系数2的一半的平方1,得;故本选项正确;B、由原方程,得,等式的两边同时加上一次项系数−7的一半的平方,得,,故本选项正确;C、由原方程,得,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2−4x=2,化二次项系数为1,得x2−x=等式的两边同时加上一次项系数−的一半的平方,得;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10、B【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x==﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.11、B【分析】根据∠C=∠E以及∠BDE=∠ADC,可以得到△BDE∽△ADC,由AD:DE=2:3,AE=10,可以求出AD和DE的值,再利用对应边成比例,即可求出DC的长.【详解】解:∵∠C=∠E,∠BDE=∠ADC∴△BDE∽△ADC∵AD:DE=2:3,AE=10∴AD=4,DE=6∴∴,解得:DC=故选B.【点睛】本题主要考查了相似三角形的判定和性质,熟练找出相似三角形以及列出对应边成比例的式子是解决本题的关键.12、A【解析】已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,由此可得抛物线与x轴的另一个交点坐标为(-3,0),所以方程ax2+bx+c=0的解是x1=-3,x2=1,故选A.二、填空题(每题4分,共24分)13、1:1.【分析】先根据三角形中位线定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【详解】解:∵点D,E分别是AC和BC的中点,∴DE为△ABC中位线,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案为:1:1.【点睛】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.14、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.15、1【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【详解】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26故答案为13【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16、【分析】根据一元二次方程有两个相等的实数根,得知其判别式的值为0,即=32-4×2×m=0,解得m即可.【详解】解:根据题意得,=32-4×2×m=0,

解得m=.故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与=b2-4ac有如下关系:当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程无实数根.17、-1【分析】过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,则可证明△OB1F∽△OAE,设A(m,n),B1(a,b),根据三角形相似和等腰三角形的性质求得m=.n=-a,再由反比例函数k的几何意义,可得出k的值.【详解】过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,∵等腰直角△ABO绕点O以逆时针旋转135°,∴∠AOB1=90°,∴∠OB1F=∠AOE,∵∠OFB1=∠AEF=90°,∴△OB1F∽△OAE,∴==,设A(m,n),B1(a,b),∵在等腰直角三角形OAB中,=,OB=OB1,∴==,∴m=b.n=﹣a,∵A是反比例函数y=(x>0)图象上一点,∴mn=4,∴﹣a•b=4,解得ab=﹣1.∵反比例函数y=的图象经过点B1,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数k的几何意义及旋转的性质,等腰直角三角形的性质,反比例函数k的几何意义是本题的关键.18、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,

故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.三、解答题(共78分)19、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,进而得出∠BAP=∠CPD,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出△ACP∽∠APD,得出比例式即可得出结论;(3)先求出CD,进而得出CD',再构造出直角三角形求出D'H,进而得出D'G,再求出AM,最后用面积差即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如图2,过点P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等边三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根据勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根据勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如图3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋转知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,过点D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根据勾股定理得,D'H=CH=,过点D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分线定理),∴S四边形ACPD'=S△ACD'+S△PCD'=AC•D'G+CP•DH'=×2×+×1×=,过点A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根据勾股定理得,AM=BM=,∴S△ACP=CP•AM=×1×=,∴S△D'AP=S四边形ACPD'﹣S△ACP=﹣=.【点睛】此题主要考查四边形综合,解题的关键是熟知等边三角形的性质、旋转的特点及相似三角形的判定与性质、勾股定理的应用.20、(1);(2)当时,面积的最大值为16;(3)【分析】(1)用待定系数法即可求出抛物线的解析式;(2)先用待定系数法求出直线AB的解析式,然后根据点P的坐标表示出Q,D的坐标,进一步表示出QD的长度,从而利用面积公式表示出的面积,最后利用二次函数的性质求最大值即可;(3)分别过点作轴的垂线,垂足分别为,首先证明≌,得到,然后得到点N的坐标,将点N的坐标代入抛物线的解析式中,即可求出t的值,注意t的取值范围.【详解】(1)∵抛物线过点,∴解得所以抛物线的解析式为:;(2)设直线AB的解析式为,将代入解析式中得,解得∴直线AB解析式为.∵,,∴,∴,∴当时,面积的最大值为16;(3)分别过点作轴的垂线,垂足分别为,.在和中,,∴≌,∴.∵,.当点落在抛物线上时,.∴,,∴.【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,全等三角形的判定及性质,二次函数的性质是解题的关键.21、(1)证明见解析;(2).【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的判定定理得到OD∥AC,求得∠ODE=∠F,根据等腰三角形的性质得到∠OED=∠ODE,等量代换得到∠OED=∠F,于是得到结论;(2)根据相似三角形的判定和性质即可得到结论.【详解】证明:(1)连接OD,∵BC切⊙O于点D,∴OD⊥BC,∴∠ODC=90°,又∵∠ACB=90°,∴OD∥AC,∴∠ODE=∠F,∵OE=OD,∴∠OED=∠ODE,∴∠OED=∠F,∴AE=AF;(2)∵OD∥AC∴△BOD∽△BAC,∴,∵AE=5,AC=4,即,∴BE=.【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)根据线段垂直平分线的性质即可得出答案;(2)先判定AECF是平行四边形,根据对角线垂直,即可得出答案;(3)根据勾股定理求出DE的值,根据“菱形的面积等于对角线乘积的一半”计算即可得出答案.【详解】(1)证明:由图可知,又∵,∴,∴;解:(2)由(1)知:∴四边形是平行四边形,又∵∴是菱形;(3)在中,∴;【点睛】本题考查的是菱形,难度适中,需要熟练掌握菱形的判定以及菱形面积的公式.23、(1)见解析;(2)2【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.24、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐标系描出A、B、C、D四点,观察图形即可得出结论(2)①分别画出直线y=2x+2、y=-x-2、y=-2得出图形为G,从而求出G的面积;②根据P(x,y)为G内(含边界)的一点,求出x、y的范围,从而2x+2y的取值范围;(2)分别画出直线y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所围成的图形M,再根据抛物线的对称轴x=﹣m,和抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点,从而求出m的取值范围【详解】解:(2)如图所示:这四个点中是x﹣y﹣2≤0的解的点是A、B、D.故答案为:A、B、D;(2)①如图所示:不等式组在坐标系内形成的图形为G,所以G的面积为:×2×2=2.②根据图象得:﹣2≤x≤2,﹣2≤y≤﹣2,∴﹣6≤2x≤2,﹣6≤2y≤﹣2,∴﹣22≤2x+2y≤2.答:2x+2y的取值范围为﹣22≤2x+2y≤2.(2)如图所示为不等式组的解集围成的图形,设为M,抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点时m的取值范围:∵抛物线的对称轴x=﹣m,﹣m≥﹣,或﹣m≤,∴m或m≥﹣.又﹣2≤2m2﹣m﹣2≤2,∴0≤m≤,综上:m的取值范围是0≤m≤【点睛】本题考查了二次函数的综合题,涉及到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论