高三级数学排列组合二项式定理课件_第1页
高三级数学排列组合二项式定理课件_第2页
高三级数学排列组合二项式定理课件_第3页
高三级数学排列组合二项式定理课件_第4页
高三级数学排列组合二项式定理课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

89《排列组合-二项式定理》Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.一、内容归纳1.

知识精讲:(1)二项式定理:

其通项是

知4求1,如:

Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.特别地:

(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,

其中,是二项式系数。而系数是字母前的常数。即:Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果二项式的幂指数是偶数,中间一项的二项式系数最大,即n偶数:如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即。Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.③所有二项式系数的和用赋值法可以证明等于即奇数项的二项式系数和与偶数项的二项式系数和相等,即(3)二项式定理的应用:近似计算和估计、证不等式,如证明:

取的展开式中的四项即可。

Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.2.重点难点:

二项式定理和二项展开式的性质。3.思维方式:一般与特殊的转化,赋值法的应用。4.特别注意:①二项式的展开式共有n+1项,是第r+1项。

②通项是(r=0,1,2,……,n)中含有五个元素,只要知道其中四个即可求第五个元素。③注意二项式系数与某一项系数的异同。④当n不是很大,|x|比较小时可以用展开式的前几项求的近似值。Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.二、问题讨论例1.(1)等于()A、B、C、D、(2)若n为奇数,则

被9除得的余数是()

A、0B、2C、7D、8DCEvaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.例2、(1)(优化设计P179例1)如果在的展开式中,前三项的系数成等差数列,求展开式中的有理项。(2)(优化设计P179例2)求的展开式的常数项。(3)在的展开式中,求x的系数(即含x的项的系数)Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.【思维点拨】

求展开式中某一特定的项的问题时,常用通项公式,用待定系数法确定r。

练习:(优化设计P180思考讨论)(1)在

的展开式中,求的系数。(2)求的展开式中的常数项。

(3)求…

的展开式中的系数。

141120。

Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.例3(优化设计P180例3)、设an=1+q+q2+…+qn-1(n∈N*,q≠±1),An=(1)

用q和n表示An(2)当时,求

【思维点拨】:本题逆用了二项式定理及

Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.例4、若=,求(1)―的值。(2)的值。

【思维点拨】

用赋值法时要注意展开式的形式。

思考题:设则

0Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.备用题:例5已知,(1)

若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数。(2)

若展开式前三项的二项式系数和等于79,求展开式中系数最大的项。【思维点拨】二项式系数与展开式某一项系数是不同的概念。Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.例6:当且n>1,求证

【思维点拨】这类是二项式定理的应用问题,它的取舍根据题目而定。三、课堂小结:1、二项式定理及二项式系数的性质。通项公式。2、要区分二项式系数与展开式项的系数的异同。3、证明组合恒等式常用赋值法。Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.四、课前热身91.已知

的展开式中,x3的系数为

,则常数a的值为______.2.在

的展开式中,常数项为__.15【解题回顾】在不影响结果的前提下,有时只要写出二项展开式的部分项,此可称为“局部运算法”.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.B3.若的展开式中含有x4的项,则n的

一个值是()(A)11(B)10(C)9(D)8Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.B4.的展开式中系数大于-1的项共有()(A)5项(B)4项

(C)3项(D)2项Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.B5.在

的展开式中,常数项是()(A)第11项(B)第7项(C)第6项(D)第5项返回Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.6.已知(3-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(1)a2+a3+a4+a5的值为________;(2)|a1|+|a2|+|a3|+|a4|+|a5|=_________.56828827.2C02n+C12n+2C22n+C32n+…+2C2k2n+C2k+12n+…+C2n-12n+2C2n2n=________.3·22n-1Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.8.若

的展开式中只有第6项的系数最大,则不含x的项为()(A)462(B)252(C)210(D)10CEvaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.9.已知(2x+1)n(n∈N+)的展开式中各项的二项式系数之和为Sn,各项的系数和为Tn,则

()(A)-1(B)0(C)12(D)1AEvaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.10.1-90C110+902C210-903C310+…+(-1)k90kCk10+…+9010C1010除以88的余数是()(A)-1(B)1(C)-87(D)87A返回Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.五、能力·思维·方法1.若(x+m)2n+1和(mx+1)2n(n∈N+,m∈R且m≠0)的展开式的xn

项的系数相等,求实数m的取值范围.【解题回顾】注意区分二项式系数与项的系数.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.2.在二项式

的展开式中,前三项的系数成等差数列,求展开式中的有理项.【解题回顾】展开式中有理项的特点是字母x的指数

即可,而不需要指数

Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.3.求

的展开式中,系数的绝对值最大的项和系数最大的项.【解题回顾】由于这个二项式的第二项分母中有数字2,所以展开式中的系数不是二项式系数,因此不能死背书上结论,以为中间项系数最大.返回Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.求证

的展开式中不能同时含有常数项.【解题回顾】二项式定理解题活动中,涉及到的很多问题都是关于整数的讨论,要注意其中的字母取整数这一隐含条件的应用.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.5.(1)求证:kCkn=n·Ck-1n-1;(2)等比数列{an}中,an>0,试化简

A=lga1-C1nlga2+C2nlga3-…+(-1)nCnnlgan+1.【解题回顾】不仅要掌握二项式的展开式,而且要习惯二项展开式的逆用,即应用二项式定理来“压缩”一个复杂的和式,这一解题思想方法是很重要的.返回Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.【解题回顾】解一、解二各有优点,在具体的问题中应视情况不同选用.6.求(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中x2的系数.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.7.已知

展开式的各项系数之和比(1+2x)2n展开式的二项式系数之和小240,求

展开式中系数最大的项.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.【解题回顾】在

展开式中,各项系数之和就等于二项式系数之和;而在(1+2x)2n展开式中各项系数之和不等于二项式系数之和,解题时要细心审题,加以区分.Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.8.已知(3x-1)7=a7x7+a6x6+…+a1x+a0,求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6.【解题回顾】本题采用的方法是“赋值法”,多项式f(x)的各项系数和均为f(1),奇数项系数和为偶数项的系数和为Evaluationonly.CreatedwithAspose.Slidesfor.NET3.5ClientProfile.Copyright2004-2011AsposePtyLtd.9.填空题:

(1)1.9975精确到0.001的近似值为_______;

(2)在(1+x+x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论