




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市港下中学2023年八年级数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.分式有意义,则x的取值范围是()A. B. C. D.一切实数2.若分式的值为零,那么x的值为A.或 B. C. D.3.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为千米/时,则可列方程()A. B.C. D.4.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有(
)A.5个 B.4个 C.3个 D.2个5.把分解因式,结果正确的是()A. B.C. D.6.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)7.下列式子中,属于最简二次根式的是()A. B. C. D.8.如图,BC=EC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列选项中的()A.∠A=∠D B.AC=DCC.AB=DE D.∠B=∠E9.在中,,,斜边的长,则的长为()A. B. C. D.10.下列分式中,最简分式是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;12.在平面直角坐标系中点P(-2,3)关于x轴的对称点在第_______象限13.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为__秒时,△ABP和△DCE全等.14.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.15.命题“两直线平行,同位角相等”的逆命题是.16.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.17.在Rt△ABC中,,,,则=_____.18.如图,在中,,,的垂直平分线分别交,于点,,则______.三、解答题(共66分)19.(10分)如图1,在平面直角坐标系中,O为坐标原点,点A(8,0).动点P从A出发以每秒2个单位长度的速度沿线段AO向终点O运动,同时动点Q从O出发以相同速度沿y轴正半轴运动,点P到达点O,两点同时停止运动,设运动时间为t.(1)当∠OPQ=45°时,请求出运动时间t;(2)如图2,以PQ为斜边在第一象限作等腰Rt△PQM,设M点坐标为(m,n),请探究m与n的数量关系并说明理由.20.(6分)面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.每名熟练工和新工人每月分别可以安装多少辆电动汽车?如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?在的条件下,工厂给安装电动汽车的每名熟练工每月发元的工资,给每名新工人每月发元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额(元)尽可能的少?21.(6分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.22.(8分)如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.(1)当时,点的坐标是;当时,点的坐标是;(2)求出点的坐标(用含的代数式表示);(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.23.(8分)已知:y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.24.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A1B1C1D1,并在对称轴AC上找出一点P,使PD+PD1的值最小.25.(10分)王华由,,,,,这些算式发现:任意两个奇数的平方差都是8的倍数(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母);(3)证明这个规律的正确性.26.(10分)如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:分母为零,分式无意义;分母不为零,分式有意义.解:由分式有意义,得x﹣1≠1.解得x≠1,故选B.考点:分式有意义的条件.2、C【分析】根据分式的值为0的条件分子为0,分母不能为0,得到关于x的方程以及不等式,求解即可得出答案.【详解】分式的值为零,,,解得:,故选C.【点睛】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.3、A【解析】设江水的流速为x千米/时,.故选A.点睛:点睛:本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.4、C【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有-1的偶次幂都等于1.【详解】如果(x+6)x+1=1成立,则x+1=0或x+6=1或-1,即x=-1或x=-5或x=-7,当x=-1时,(x+6)0=1,当x=-5时,1-4=1,当x=-7时,(-1)-6=1,故选C.【点睛】本题考查了零指数幂的意义和1的指数幂,关键是熟练掌握零指数幂的意义和1的指数幂.5、C【解析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】==,故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.6、D【解析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【详解】根据两个标志点A(3,1),B(2,2)可建立如下所示的坐标系:
由平面直角坐标系知,“宝藏”点C的位置是(1,1),
故选:D.【点睛】考查了坐标确定位置,正确得出原点位置是解题关键.7、B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】A.=,不是最简二次根式,故该选项不符合题意,B.是最简二次根式,故该选项符合题意,C.被开方数中含分母,不是最简二次根式,故该选项不符合题意,D.=,被开方数中含分母,不是最简二次根式,故该选项不符合题意,故选:B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8、C【分析】根据全等三角形的判定条件进行分析即可;【详解】根据已知条件可得,即,∵BC=EC,∴已知三角形一角和角的一边,根据全等条件可得:可根据AAS证明,A正确;可根据SAS证明,B正确;不能证明,C故错误;根据ASA证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定条件,根据已知条件进行准确分析是解题的关键.9、A【分析】根据30°角的直角三角形的性质解答即可.【详解】解:在中,∵,,斜边的长,∴.故选:A.【点睛】本题考查了30°角的直角三角形的性质,属于基础题型,熟练掌握30°角对的直角边等于斜边的一半是解题关键.10、A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.二、填空题(每小题3分,共24分)11、AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,
∴BD-CD=CE-CD,
∴BC=DE,
①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).12、三【分析】先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.【详解】解:点P(-2,3)关于x轴的对称点为(-2,-3),
(-2,-3)在第三象限.
故答案为:三【点睛】本题主要考查平面直角坐标系中各象限内点的坐标的符号,以及关于x轴的对称点横坐标相同,纵坐标互为相反数.13、1或2【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=11-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=11﹣2t=2,解得t=2.所以,当t的值为1或2秒时.△ABP和△DCE全等.故答案为:1或2.【点睛】本题考查了全等三角形的判定,要注意分类讨论.14、(673,0)【分析】由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【详解】解:由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019(673,0)则点P2019的坐标是(673,0).故答案为(673,0).【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.15、同位角相等,两直线平行【详解】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【点睛】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用16、【解析】试题分析:解:设y=x+b,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.17、1【分析】在Rt△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的AB,AC的长,则根据勾股定理可以求BC的长.【详解】∵AB=13,AC=12,∠C=90°,
∴BC=1.
故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.18、40°【分析】根据等腰三角形的性质得出∠B=∠C=40°,再根据垂直平分线的性质解答即可.【详解】解:∵在中,,∴,又∵的垂直平分线分别交,于点,,∴AE=BE,∴∠BAE=∠B=40°,故答案为:40°.【点睛】本题考查了等腰三角形的性质及垂直平分线的性质,灵活运用上述性质进行推导是解题的关键.三、解答题(共66分)19、(1)当∠OPQ=45°时,运动时间为2秒;(2);理由见解析.【分析】(1)先由运动知,OP=8-2t,OQ=2t,根据等腰直角三角形的性质即可结论;
(2)先判断出△MCQ≌△MBP,得出CQ=BP,MC=MB,即可得出点M的纵横坐标相等,即可得出结论.【详解】(1)由题意可知,AP=2t,OQ=2t,∵A(8,0),OA=8,∴,∴OP=,在Rt△POQ中,∵∠POQ=90°,∠OPQ=45°,∴∠OQP=45°∴OP=OQ,∴,∴,∴当∠OPQ=45°时,运动时间为2秒;(2).理由:如图,过点M作MB⊥x轴于B,作MC⊥y轴于C,则MC=m,MB=n.∵MB⊥x轴,MC⊥y轴,∴∠MBP=∠MCQ=90°.∵∠POQ=90°,∴∠BMC=90°,∵△PMQ是等腰直角三角形,∴MQ=MP,∠PMQ=90°,∴∠CMQ=∠BMP,在△MCQ和△MBP中,,∴△MCQ≌△MBP(AAS),∴MC=MB,∴.【点睛】本题主要考查了坐标与图形,等腰直角三角形的性质,全等三角形的判定和性质,解本题关键是作出辅助线,构造全等三角形解决问题,20、(1)每名熟练工和新工人每月分别可以安装、辆电动汽车.工厂有种新工人的招聘方案.①新工人人,熟练工人;②新工人人,熟练工人;③新工人人,熟练工人;④新工人人,熟练工人.当,时(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【解析】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解;(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,结合(2)进行分析即可得.【详解】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据题意,得,解得,答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车;设工厂有名熟练工,根据题意,得,,,又,都是正整数,,所以,,,.即工厂有种新工人的招聘方案.①,,即新工人人,熟练工人;②,,即新工人人,熟练工人;③,,即新工人人,熟练工人;④,,即新工人人,熟练工人;结合知:要使新工人的数量多于熟练工,则,;或,;或,,根据题意,得,要使工厂每月支出的工资总额(元)尽可能地少,则应最大,显然当,时,(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【点睛】本题考查了二元一次方程组的应用、一次方程组的应用,理解题意,正确找准等量关系以及各量间的数量关系是解题的关键.21、(1)①③;(2)【分析】(1)根据对称式的定义进行判断;(2)由可知,再根据对称式的定义判断即可;当时,,代入求解即可.【详解】(1)①③;(2)∵∴,∴的表达式都是对称式;当时,,∴,∴.【点睛】本题考查分式的化简求值,以对称式的方式考查,有一定的难度,需要准确理解对称式的定义.22、(1)(2,2);(,);(2)P(,);(3).【分析】(1)当时,三角形AOB为等腰直角三角形,所以四边形OAPB为正方形,直接写出结果;当时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;(2)作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;(3)根据已知求出BC值,根据上问得到OQ=,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.【详解】(1)当时,三角形AOB为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN=∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PMBN=AM∴四边形OMPN为正方形,OM=ON=PN=PM∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=∴P(,)(2)如图作PE⊥y轴于E,PF⊥x轴于F,则四边形OEPF为矩形∵∠BPE+∠BPF=∠APF+∠BPF=90°∴∠BPE=∠APF∵∠BEP=∠AFP∴△BEP≌△AFP∴PE=PFBE=AF∴四边形OEPF为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴OE=OF=PE=PF=∴P(,);(3)根据题意作PQ⊥y轴于Q,作PG⊥x轴与G∵B(0,2)C(1,1)∴BC=由上问可知P(,),OQ=∵△PQB≌△PCB∴BC=QB=∴OQ=BQ+OB=+2=解得t=.【点睛】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.23、(1)y=x+2;(2)M(1,3).【分析】(1)根据正比例函数的定义设y-2=kx(k≠0),然后把x、y的值代入求出k的值,再整理即可得解;(2)将点M(m,3)的坐标代入函数解析式得到关于m的方程即可求解.【详解】解:(1)设y-2=kx(k≠0),把x=2,y=4代入求得k=1,∴函数解析式是y=x+2;(2)∵点M(m,3)在这个函数图象上,∴m+2=3,解得:m=1,∴点M的坐标为(1,3).【点睛】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.24、(1)答案见解析;(2)答案见解析.【分析】(1)点D是点B关于直线AC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 官方的室内装修施工合同3篇
- 担保合同担保合同(一)6篇
- 精装房屋抵押借贷合同10篇
- 新建铁路工程劳务协作合同3篇
- 钢增强塑料复合管项目绩效评估报告
- 高效节能电动机项目绩效评估报告
- 小学第33个爱国卫生月主题活动
- 服装设计高端时尚
- 儿歌表演唱教学设计
- 新生儿居家护理
- 酒店筹开期操作手册(业主代表小组适用)
- 城市生活垃圾卫生填埋场运行管理培训
- 2023年《早》舒淇早期古装掰全照原创
- 部编版六年级语文下册根据语境写词语(小升初归类练习)
- 人工智能之知识库
- 张哲华鑫仔小品《警察和我》台词剧本手稿
- 中等职业学校英语课程标准(2020年版)(word精排版)
- 毕业生就业推荐表word模板
- 南京市特种设备安全监督检验研究院公开招考5名编外工作人员模拟检测试卷【共1000题含答案解析】
- 2023年八年级生物学业水平考试复习试卷
- YY/T 1685-2020气动脉冲振荡排痰设备
评论
0/150
提交评论