江苏省无锡锡东片2023-2024学年八年级数学第一学期期末达标检测模拟试题含解析_第1页
江苏省无锡锡东片2023-2024学年八年级数学第一学期期末达标检测模拟试题含解析_第2页
江苏省无锡锡东片2023-2024学年八年级数学第一学期期末达标检测模拟试题含解析_第3页
江苏省无锡锡东片2023-2024学年八年级数学第一学期期末达标检测模拟试题含解析_第4页
江苏省无锡锡东片2023-2024学年八年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡锡东片2023-2024学年八年级数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列运算正确的是()A.(π-3.14)0=0 B.2a2a3=2a6C.= D.(-3x-1y3)2=6x-2y62.如图,△ABC≌△AED,点D在BC上,若∠EAB=42°,则∠DAC的度数是()A.48° B.44° C.42° D.38°3.①实数和数轴上的点一一对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的数有两个.④的算术平方根是1.其中真命题有()A.1个 B.2个 C.3个 D.4个4.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D5.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.∠B=∠C D.BE=CD6.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若DE=15cm,BE=8cm,则BC的长为()A.15cm B.17cm C.30cm D.32cm7.下列长度的三条线段,能组成三角形的是()A.3、1、4 B.3、5、9 C.5、6、7 D.3、6、108.在实数,,0,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个9.已知x2+2mx+9是完全平方式,则m的值为()A.±3 B.3 C.±6 D.610.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,1511.下列图形中,是轴对称图形的是()A. B.C. D.12.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是()A.10%B.20%C.30%D.40%二、填空题(每题4分,共24分)13.如图,在四边形中,,,,,点是的中点.则______.14.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.15.若是方程的一个解,则______.16.如图1六边形的内角和为度,如图2六边形的内角和为度,则________.17.已知﹣=3,则分式的值为_____.18.分式的最简公分母是_____________.三、解答题(共78分)19.(8分)在平面直角坐标系中,一条直线经过、、三点.(1)求的值;(2)设这条直线与轴交于点,求的面积.20.(8分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子.(1)图1是由几个面积不等的小正方形与小长方形拼成的一个边长为a+b+c的正方形,试用不同的方法计算这个正方形的面积,你发现了什么结论?请写出来;(2)图2是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连结BD、BF,若两正方形的边长满足a+b=10,ab=20,试求阴影部分的面积.

21.(8分)如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.(1)求证:∠BAE=∠BEA;(2)求点F的坐标;(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.22.(10分)如图,已知为等边三角形,AE=CD,,相交于点F,于点Q.(1)求证:≌;(2)若,求的长.23.(10分)近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:平均月收入/千元中位数/千元众数/千元方差/千元2“美团”①______661.2“滴滴”6②____4③_____(1)完成表格填空;(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.24.(10分)如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.25.(12分)(1)式子++的值能否为0?为什么?(2)式子++的值能否为0?为什么?26.化简求值:,其中,满足.

参考答案一、选择题(每题4分,共48分)1、C【分析】通过整式及实数的计算进行逐一判断即可得解.【详解】A.,故A选项错误;B.,故B选项错误;C.=,故C选项正确;D.,故D选项错误,故选:C.【点睛】本题主要考查了实数及整式的运算,熟练掌握相关幂运算是解决本题的关键.2、C【分析】根据全等三角形的性质得到∠BAC=∠EAD,于是可得∠DAC=∠EAB,代入即可.【详解】解:∵△ABC≌△AED,

∴∠BAC=∠EAD,∴∠EAB+∠BAD=∠DAC+∠BAD,

∴∠DAC=∠EAB=42°,

故选:C.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.3、A【分析】根据数轴的性质与实数的性质及二次根式的性质依次判断即可.【详解】实数和数轴上的点一一对应,①是真命题;不带根号的数不一定是有理数,例如π是无理数,②是假命题;一个数的立方根是它本身,这样的数有±1,0,共3个,③是假命题;的算术平方根是3,④是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了命题真假的判断,熟练掌握各章节的相关概念是解题关键.4、D【分析】根据全等三角形的判定定理,逐一判断选项,即可得到结论.【详解】∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB(SSS),故A选项正确;∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故B选项正确;∵BO=CO,∴∠ACB=∠DBC,∵BC=CB,∠A=∠D∴△ABC≌△DCB(AAS),故C选项正确;∵∠ABD=∠DCA,∠A=∠D,BC=CB,不能证明△ABC≌△DCB,故D选项错误;故选:D.【点睛】本题主要考查三角形全等的判定定理,掌握SSS,SAS,AAS判定三角形全等,是解题的关键.5、D【分析】判定全等三角形时,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【详解】解:A、∵在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;B、∵AB=AC,BD=CE,∴AD=AE,在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;C、∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故本选项不符合题意;D、根据AB=AC,BE=CD和∠A=∠A不能推出△ABE≌△ACD,故本选项符合题意;故选:D.【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6、D【分析】先利用角平分线的性质得到DC=15,再根据勾股定理计算出BD,然后计算CD+BD即可.【详解】解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE=15,在Rt△BDE中,BD==17,∴BC=CD+BD=15+17=32(cm).故选:D.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.7、C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;

B、3+5=8<9,不能组成三角形;

C、5+6=11>7,能够组成三角形;

D、3+6=9<10,不能组成三角形.

故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.8、B【分析】根据无理数即为无限不循环小数逐一分析即可.【详解】解:是分数,属于有理数,故不符合题意;是无理数;0是有理数;是无理数;是有理数;是有限小数,属于有理数;是无理数.共有3个无理数故选B.【点睛】此题考查的是无理数的判断,掌握无理数即为无限不循环小数是解决此题的关键.9、A【分析】将原式转化为x2+2mx+32,再根据x2+2mx+32是完全平方式,即可得到x2+2mx+32=(x±3)2,将(x±3)2展开,根据对应项相等,即可求出m的值.【详解】原式可化为x2+2mx+3,又∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2,∴x2+2mx+9=x2±6mx+9,∴2m=±6,m=±3.故选A.【点睛】此题考查完全平方式,掌握运算法则是解题关键10、D【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.11、D【分析】根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.【点睛】本题考查轴对称图形的判断,关键在于熟记轴对称图形的概念.12、A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A.【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.二、填空题(每题4分,共24分)13、【分析】延长BC

到E

使BE=AD,则四边形ABED是平行四边形,根据三角形的中位线的性质得到,答案即可解得.【详解】解:延长BC

到E,

使BE=AD,∵,∴四边形ABED是平行四边形,∵,,

∴C是BE的中点,

∵M是BD的中点,

又∵,∴,故答案为:.【点睛】本题考查了平行四边形的判定,三角形的中位线定理,正确的作出辅助线是解题的关键.14、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【点睛】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.15、1【解析】把代入方程,即可解答.【详解】解:把代入方程,得:,解得:a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解决本题的关键是利用代入法解答即可.16、0【分析】将两个六边形分别进行拆分,再结合三角形的内角和和四边形的内角和计算即可得出答案.【详解】如图1所示,将原六边形分成了两个三角形和一个四边形,∴=180°×2+360°=720°如图2所示,将原六边形分成了四个三角形∴=180°×4=720°∴m-n=0故答案为0.【点睛】本题考查的是三角形的内角和和四边形的内角和,难度适中,解题关键是将所求六边形拆分成几个三角形和四边形的形式进行求解.17、【分析】由已知条件可知xy≠1,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把代入即可.【详解】解:∵∴x≠1,y≠1,∴xy≠1.故答案为.【点睛】本题主要考查了分式的基本性质及求分式的值的方法,把作为一个整体代入,可使运算简便.18、【解析】试题分析:找分母各项的系数的最小公倍数,和相同字母的次数最高的项,故最简公分母为.考点:最简公分母三、解答题(共78分)19、(1)7;(2)1【分析】(1)利用待定系数法求出直线的解析式,进而即可求解;

(2)求出直线与y轴相交于点D的坐标,再利用三角形面积公式解答即可.【详解】(1)设直线的解析式为:y=kx+b,把,代入,可得:,解得:,∴直线解析式为:y=−2x+1,把代入y=−2x+1中,得:a=7;(2)由(1)得:点B的坐标为(−2,7),令x=0,则y=1,∴直线与y轴的交点D坐标为(0,1),∴的面积=×1×2=1.【点睛】本题主要考查一次函数图象和性质,掌握待定系数法以及一次函数图象上点的坐标特征,是解题的关键.20、(1)a2+b2+c2+2ab+2bc+2ac;(2)20【解析】试题分析:(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,另一种是大正方形的面积,可得等式;(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.试题解析:(1);(2)考点:因式分解的应用21、(1)证明见解析;(2)F(3,0);(3)m=n,证明见解析.【分析】(1)先证明△ABO≌△BED,从而得出AB=BE,然后根据等边对等角可得出结论;(2)连接OE,设DF=x,先求出点E的坐标,再根据S△AOE+S△EOF=S△AOF可得出关于x的方程,求出x,从而可得出点F的坐标;(3)过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,先证明△EQH≌△EKG,再证明△KEM≌△QEM,得出MK=MQ,从而有AM-MQ=AM-MK=AK=n①;连接EP,证明△AEK≌△PEQ,从而有AK=PQ=m②,由①②即可得出结论.【详解】解:(1)∵A(0,3),B(-1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,又∠AOB=∠BDE=90°,∠BED=∠ABD,∴△ABO≌△BED(AAS),∴BA=BE,∴∠BAE=∠BEA;(2)由(1)知,△ABO≌△BED,∴DE=BO=1,∴E(2,1),连接OE,设DF=x,∵S△AOE+S△EOF=S△AOF,∴3×2×+(2+x)×1×=3(2+x)×,∴x=1,∴点F的坐标为(3,0);(3)m=n,证明如下:∵OA=OF=3,∴∠OAF=45°=∠MEQ,过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,∵Q(m,-1),E(2,1),∴EG=EH=PH=PG=2,又GK=QH,∠EGK=∠EQH=90°,∴△EQH≌△EKG(SAS),∴EK=EQ,∠GEK=∠HEQ,∵∠GEH=90°,∠MEQ=45°,∴∠QEH+∠GEM=45°,∴∠GEK+∠GEM=45°,即∠KEM=45°=∠MEQ,又EM=EM,∴△KEM≌△QEM(SAS),∴MK=MQ,∴AM-MQ=AM-MK=AK=n①,∴MQ=MG+KG=MG+QH.连接EP,△EHP为等腰直角三角形,∠EPH=45°,∴∠EPQ=∠EPA=45°,△EHP为等腰直角三角形,PE=AE,∠PEA=90°,∵∠KEM=∠MEQ=45°,∴∠KEQ=90°,∴∠AEK=∠PEQ,∠EPQ=∠KAE,∴△AEK≌△PEQ,∴AK=PQ=m②,由①②可得,m=n.【点睛】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质以及平面直角坐标系中求点的坐标与图形的面积问题等,第(3)小题的关键是作出辅助线构造全等三角形解决问题.22、(1)证明见解析;(2)AD=1.【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;(2)利用(1)的结果的结果求得∠FBQ=30°,所以由“30度角所对的直角边是斜边的一半”得到BF=2FQ=8,则易求BE=BF+EF=8+1=1.【详解】(1)证明:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠C=60°,

在△AEB与△CDA中,,

∴△AEB≌△CDA(SAS),

(2)由(1)可知≌,∴,AD=BE又,BF=2FQ=8,∴BE=BF+EF=8+1=1∴AD=1【点睛】本题考查了全等三角形的判定与性质、含30度角的直角三角形,在判定三角形全等时,关键是选择恰当的判定条件.23、(1)6;4.5;7.6(2)美团【分析】(1)①根据加权平均数的定义求解即可;②根据中位数的定义求解即可;③根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论