版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省建水第六中学2024届高三下学期第三次联合考试(期末)数学试题(文理)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.2.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.3.函数的大致图象是()A. B.C. D.4.设,满足约束条件,则的最大值是()A. B. C. D.5.已知函数,若不等式对任意的恒成立,则实数k的取值范围是()A. B. C. D.6.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像7.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为()A. B. C. D.8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为()A. B. C. D.9.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.10.已知函数为奇函数,且,则()A.2 B.5 C.1 D.311.已知函数在上有两个零点,则的取值范围是()A. B. C. D.12.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和公式为,则数列的通项公式为___.14.已知数列满足,则________.15.内角,,的对边分别为,,,若,则__________.16.已知复数(为虚数单位)为纯虚数,则实数的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.18.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:19.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)20.(12分)在三棱锥S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45∘,∠SAC=60°,D为棱AB的中点,SA=2(I)证明:SD⊥BC;(II)求直线SD与平面SBC所成角的正弦值.21.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(l)求直线的普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且.求直线的方程.22.(10分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【题目详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【题目点拨】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.2、A【解题分析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【题目详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【题目点拨】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.3、A【解题分析】
用排除B,C;用排除;可得正确答案.【题目详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【题目点拨】本题考查了函数图象,属基础题.4、D【解题分析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【题目详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【题目点拨】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.5、A【解题分析】
先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【题目详解】当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【题目点拨】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.6、B【解题分析】
化简到,根据定义域排除,计算单调性知正确,得到答案.【题目详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【题目点拨】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.7、A【解题分析】
根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【题目详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,∴,即:,,所以双曲线的渐近线方程为:.故选:A.【题目点拨】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.8、B【解题分析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【题目详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【题目点拨】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.9、B【解题分析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【题目详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【题目点拨】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.10、B【解题分析】
由函数为奇函数,则有,代入已知即可求得.【题目详解】.故选:.【题目点拨】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.11、C【解题分析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【题目详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【题目点拨】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.12、D【解题分析】
先计算,然后将进行平方,,可得结果.【题目详解】由题意可得:∴∴则.故选:D.【题目点拨】本题考查的是向量的数量积的运算和模的计算,属基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式.【题目详解】由题意,可知当时,;当时,.又因为不满足,所以.【题目点拨】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】
项和转化可得,讨论是否满足,分段表示即得解【题目详解】当时,由已知,可得,∵,①故,②由①-②得,∴.显然当时不满足上式,∴故答案为:【题目点拨】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.15、【解题分析】∵,∴,即,∴,∴.16、【解题分析】
利用复数的乘法求解再根据纯虚数的定义求解即可.【题目详解】解:复数为纯虚数,解得.故答案为:.【题目点拨】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】
(1)设切点坐标为,然后根据可解得实数的值;(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【题目详解】(1),,设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,,则,,由,得.当时,,此时,函数为增函数;当时,,此时,函数为减函数.,.①当,即当时,函数有一个零点;②当,即当时,函数有两个零点;③当,即当时,函数有三个零点;④当,即当时,函数有两个零点;⑤当,即当时,函数只有一个零点.综上所述,当或时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【题目点拨】本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题.18、(1)证明见解析(2)【解题分析】
(1)由得令可得,进而得到,同理,利用数量积坐标计算即可;(2),分,两种情况讨论即可.【题目详解】(1)证明:点的坐标为.联立方程,消去后整理为有,可得,,.可得点的坐标为.当时,可求得点的坐标为,,.有,故有.(2)若点在轴上方,因为,所以有,由(1)知①因为时.由(1)知,由函数单调递增,可得此时.②当时,由(1)知令由,故当时,,此时函数单调递增:当时,,此时函数单调递减,又由,故函数的最小值,函数取最小值时,可求得.由①②知,若点在轴上方,当的面积最小时,直线的斜率为.【题目点拨】本题考查直线与椭圆的位置关系,涉及到分类讨论求函数的最值,考查学生的运算求解能力,是一道难题.19、(1)分布列见解析;(2)406.【解题分析】
(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【题目详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,,所以的分布列为:(2)方案②中.结合(1)知每个人的平均化验次数为:时,,此时1000人需要化验的总次数为690次,时,,此时1000人需要化验的总次数为604次,时,,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少次.【题目点拨】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.20、(I)证明见解析;(II)1【解题分析】
(I)过D作DE⊥BC于E,连接SE,根据勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到证明.(II)过点D作DF⊥SE于F,证明DF⊥平面SBC,故∠ESD为直线SD与平面SBC所成角,计算夹角得到答案.【题目详解】(I)过D作DE⊥BC于E,连接SE,根据角度的垂直关系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根据余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD⊂平面SED,故SD⊥BC.(II)过点D作DF⊥SE于F,BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1998年度注册会计师考试试题及答案
- 海南省三亚市2024-2025学年八年级上学期1月期末物理试题(无答案)
- 2024-2025学年八年级上学期1月期末物理试题(含答案)
- 7天连锁酒店集团工程施工合同
- 2025年度国家级矿产资源开发与利用采矿合同范本3篇
- 2024环保产业展会合作合同书版B版
- 2024年肉类市场购销合同
- 2025便利店会员积分体系合作协议3篇
- 2024青年志愿者社会公益项目合作协议2篇
- 2024股权变更与投资协议
- 小学一年级英语1a期末学业评价方案
- 劳务派遣劳务外包服务方案(技术方案)
- 2023年药品注册专员年度总结及来年计划
- 图纸标注常见问题和要求国家标准新版
- 软件无线电原理与应用第3版 课件 第4-6章 软件无线电硬件平台设计、软件无线电信号处理算法、信道编译码技术
- 儿童ERCP的应用及技巧课件
- 《低压电工技术》课程标准
- 22G101系列图集常用点全解读
- (国家基本公共卫生服务项目第三版)7高血压患者健康管理服务规范
- 12 富起来到强起来 精神文明新风尚(说课稿)-部编版道德与法治五年级下册
- 中级消防维保理论考试试题题库及答案
评论
0/150
提交评论