版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省尚志中学2024届下学期高三联考试卷数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.2.已知为坐标原点,角的终边经过点且,则()A. B. C. D.3.在长方体中,,则直线与平面所成角的余弦值为()A. B. C. D.4.的展开式中有理项有()A.项 B.项 C.项 D.项5.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.6.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.47.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,8.已知集合,,则等于()A. B. C. D.9.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.10.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.11.已知集合,则等于()A. B. C. D.12.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过二、填空题:本题共4小题,每小题5分,共20分。13.若幂函数的图象经过点,则其单调递减区间为_______.14.已知数列{an}的前n项和为Sn,向量(4,﹣n),(Sn,n+3).若⊥,则数列{}前2020项和为_____15.设为定义在上的偶函数,当时,(为常数),若,则实数的值为______.16.已知角的终边过点,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在点处的切线方程为求a,b的值;证明:.18.(12分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosB(1)求b的值;(2)若cosB+3sin19.(12分)已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.20.(12分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.21.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.22.(10分)设函数.(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【题目详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【题目点拨】本题考查了古典概率的计算,意在考查学生的应用能力.2、C【解题分析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【题目详解】根据题意,,解得,所以,所以,所以.故选:C.【题目点拨】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.3、C【解题分析】
在长方体中,得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【题目详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,,直线与平面所成角的余弦值为.故选:C.【题目点拨】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.4、B【解题分析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【题目详解】,,当,,,时,为有理项,共项.故选:B.【题目点拨】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.5、B【解题分析】
由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【题目详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【题目点拨】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.6、D【解题分析】
先用公差表示出,结合等比数列求出.【题目详解】,因为成等比数列,所以,解得.【题目点拨】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.7、D【解题分析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【题目详解】由函数图象可知:,函数的图象过点,,则故选【题目点拨】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果8、A【解题分析】
进行交集的运算即可.【题目详解】,1,2,,,,1,.故选:.【题目点拨】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.9、C【解题分析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【题目详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【题目点拨】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.10、A【解题分析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【题目详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【题目点拨】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.11、C【解题分析】
先化简集合A,再与集合B求交集.【题目详解】因为,,所以.故选:C【题目点拨】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.12、D【解题分析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【题目详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【题目点拨】本题考查条形图,考查基本分析求解能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用待定系数法求出幂函数的解析式,再求出的单调递减区间.【题目详解】解:幂函数的图象经过点,则,解得;所以,其中;所以的单调递减区间为.故答案为:.【题目点拨】本题考查了幂函数的图象与性质的应用问题,属于基础题.14、【解题分析】
由已知可得•4Sn﹣n(n+3)=0,可得Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.可得:2().利用裂项求和方法即可得出.【题目详解】∵⊥,∴•4Sn﹣n(n+3)=0,∴Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.,满足上式,.∴2().∴数列{}前2020项和为2(1)=2(1).故答案为:.【题目点拨】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.15、1【解题分析】
根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【题目详解】因为为定义在上的偶函数,所以,又因为当时,,所以,所以实数的值为1.故答案为:1【题目点拨】本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.16、【解题分析】
由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值.【题目详解】解:∵角的终边过点,∴,,∴,故答案为:.【题目点拨】本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】分析:第一问结合导数的几何意义以及切点在切线上也在函数图像上,从而建立关于的等量关系式,从而求得结果;第二问可以有两种方法,一是将不等式转化,构造新函数,利用导数研究函数的最值,从而求得结果,二是利用中间量来完成,这样利用不等式的传递性来完成,再者这种方法可以简化运算.详解:(1)解:,由题意有,解得(2)证明:(方法一)由(1)知,.设则只需证明,设则,在上单调递增,,使得且当时,,当时,当时,,单调递减当时,,单调递增,由,得,,设,,当时,,在单调递减,,因此(方法二)先证当时,,即证设,则,且,在单调递增,在单调递增,则当时,(也可直接分析显然成立)再证设,则,令,得且当时,,单调递减;当时,,单调递增.,即又,点睛:该题考查的是有关利用导数研究函数的综合问题,在求解的过程中,涉及到的知识点有导数的几何意义,有关切线的问题,还有就是应用导数证明不等式,可以构造新函数,转化为最值问题来解决,也可以借用不等式的传递性,借助中间量来完成.18、(1)b=32【解题分析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求b的值,所以可以考虑到根据余弦定理将cosB,cosC分别用边表示,再根据正弦定理可以将sinAsinC转化为ac,于是可以求出b的值;(2)首先根据sinB+3cosB=2求出角B的值,根据第(1)问得到的b值,可以运用正弦定理求出ΔABC外接圆半径R,于是可以将a+c转化为2RsinA+2R试题解析:(1)由cosB应用余弦定理,可得a2化简得2b=3则b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b则a+c==sin=3=3sin又∵0<A<2π3,法二因为b=32得34又因为ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三边关系定理可知综上a+c∈(考点:1.正、余弦定理;2.正弦型函数求值域;3.重要不等式的应用.19、(1);(2)m-n-1=0【解题分析】试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1+k3表示为直线l斜率的关系式,化简后得k1+k3=2,于是可得m,n的关系式.试题解析:(1)由题意,c=,b=1,所以a=故椭圆C的方程为(2)①当直线l的斜率不存在时,方程为x=1,代入椭圆得,y=±不妨设A(1,),B(1,-)因为k1+k3==2又k1+k3=2k2,所以k2=1所以m,n的关系式为=1,即m-n-1=0②当直线l的斜率存在时,设l的方程为y=k(x-1)将y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0设A(x1,y1),B(x2,y2),则又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的关系式为m-n-1=0综上所述,m,n的关系式为m-n-1=0.考点:椭圆标准方程,直线与椭圆位置关系,20、(1)见解析(2)(文)(理)【解题分析】
(1)证明:取PD中点G,连结GF、AG,∵GF为△PDC的中位线,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四边形,则EF∥AG,又EF不在平面PAD内,AG在平面PAD内,∴EF∥面PAD;(2)(文)解:取AD中点O,连结PO,∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且,又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离,故;(理)连OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值为.【方法点晴】本题主要考查线面平行的判定定理、二面角的求法、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行贷款委托代理合同(2篇)
- 巴西课件 湘教版
- 人教版南辕北辙课件
- 苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题
- 老舍《茶馆》课件
- 外科护理课件
- 基层教育 课件
- 西京学院《中华才艺》2023-2024学年第一学期期末试卷
- 西京学院《外国文学》2021-2022学年第一学期期末试卷
- 西华师范大学《中外电影史》2021-2022学年期末试卷
- 工程联系单表格样本
- 新媒体运营智慧树知到期末考试答案章节答案2024年黑龙江职业学院
- 耳鼻喉科病例讨论模板
- 《道路行驶记录仪检测装置校准规范-公示稿》
- 低分学生提升计划小学数学
- 滑坡泥石流-高中地理省公开课金奖全国赛课一等奖微课获奖
- 人工智能职业生涯规划报告总结
- 主题班队会教学设计
- 三年级上册数学除法竖式计算300道带答案
- 供应室停水停电应急预案
- JGJ72-2004 高层建筑岩土工程勘察规程
评论
0/150
提交评论