吉林省延边州安图县2023年数学八上期末综合测试模拟试题含解析_第1页
吉林省延边州安图县2023年数学八上期末综合测试模拟试题含解析_第2页
吉林省延边州安图县2023年数学八上期末综合测试模拟试题含解析_第3页
吉林省延边州安图县2023年数学八上期末综合测试模拟试题含解析_第4页
吉林省延边州安图县2023年数学八上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延边州安图县2023年数学八上期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列各组值代表线段的长度,其中能组成三角形的是()A.,, B.,, C.,, D.,,2.如图,,,,是数轴上的四个点,其中最适合表示无理数的点是()A.点 B..点 C.点 D.点3.在实数范围内,有意义,则的取值范围是()A. B. C. D.4.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.5.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有()A.2个 B.3个 C.4个 D.5个6.500米口径球面射电望远镜,简称,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A. B. C. D.7.化简的结果为()A. B. C. D.8.已知点与点关于轴对称,那么的值为()A. B. C. D.9.计算(-3)mA.3m-1 B.(-3)m-1 C.-10.k、m、n为三整数,若,,,则下列有关于k、m、n的大小关系正确的是()A.k<m=n B.m=n<k C.m<n<k D.m<k<n11.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.12.以下轴对称图形中,对称轴条数最少的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,,点在的内部,点,分别是点关于、的对称点,连接交、分别于点、;若的周长的为10,则线段_____.14.如图,y=k1x+b1与y=k2x+b2交于点A,则方程组的解为______.15.如图,在△ABC中,∠A=40°,点D是∠ABC和∠ACB角平分线的交点,则∠BDC为________16.如图,在等腰中,,,平分交于,于,若,则的周长等于_______;17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=_____.18.如下图,在△ABC中,∠B=90°,∠BAC=40°,AD=DC,则∠BCD的度数为______.三、解答题(共78分)19.(8分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.20.(8分)如图,等腰中,,,点、分别在边、的延长线上,,过点作于点,交于点.(1)若,求的度数;(2)若.求证:.21.(8分)如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).(1)将△ABC向下平移4个单位长度,画出平移后的△ABC;(2)画出△ABC关于y轴对称的△ABC.并写出点A,B,C的坐标.22.(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?23.(10分)如图,在中,,,是的平分线,,垂足是,和的延长线交于点.(1)在图中找出与全等的三角形,并说出全等的理由;(2)说明;(3)如果,直接写出的长为.24.(10分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.25.(12分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(0,-3),B(3,-2),C(2,-4).(1)在图中作出△ABC关于x轴对称的△A1B1C1.(2)点C1的坐标为:.(3)△ABC的周长为.26.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O.给出下列3个条件:①∠EBO=∠DCO;②AE=AD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定ΔABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边解答即可.【详解】因为1+2<3.5,故A中的三条线段不能组成三角形;因为15+8>20,故B中的三条线段能组成三角形;因为5+8<15,故C中的三条线段不能组成三角形;因为4+5=9,故D中的三条线段不能组成三角形;故选:B【点睛】本题考查了三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是关键.2、D【分析】能够估算无理数的范围,结合数轴找到点即可.【详解】因为无理数大于,在数轴上表示大于的点为点;故选D.【点睛】本题考查无理数和数轴的关系;能够准确估算无理数的范围是解题的关键.3、A【分析】分式有意义的条件:分母不为1,据此即可得答案.【详解】∵有意义,∴x-2≠1,解得:x≠2,故选:A.【点睛】本题考查分式有意义的条件,要使分式有意义,分母不为1.4、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.5、A【解析】根据无理数的定义对每个数进行判断即可.【详解】在,1,,﹣,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个.故选:A.【点睛】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00519=5.19×10-1.

故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【解析】根据分式加减法的运算法则按顺序进行化简即可.【详解】原式====故选B【点睛】本题考查分式的运算、平方差公式、完全平方公式,熟练掌握分式运算法则、公式法因式分解是解题关键.8、A【分析】根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点与点关于轴对称,,,∴,故选:A.【点睛】此题主要考查了关于轴对称点的坐标,关键是掌握点的坐标的变化规律.9、C【解析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m+2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.10、A【分析】先化简二次根式,再分别求出k、m、n的值,由此即可得出答案.【详解】由得:由得:由得:则故选:A.【点睛】本题考查了二次根式的化简,掌握化简方法是解题关键.11、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12、D【解析】根据轴对称图形的概念对各选项分析判断即可解答.【详解】选项A有四条对称轴;选项B有六条对称轴;选项C有四条对称轴;选项D有二条对称轴.综上所述,对称轴最少的是D选项.故选D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每题4分,共24分)13、1【分析】连接,,根据对称得出是等边三角形,进而得出答案.【详解】解:连接,,∵、分别是点关于直线、的对称点,,,,,,,CD=CE+EF+DF=PE+EF+PF=1,是等边三角形,.故答案为:1.【点睛】本题依据轴对称的性质,得出是等边三角形是解题关键.14、【解析】试题解析:∵与交于点∴二元一次方程组的解为故答案为15、110°【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70°,再利用三角形内角和定理即可求出∠BDC的度数.【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,

∴∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∵∠A=40°,

∴∠ABC+∠ACB=180°−40°=140°,

∴∠DBC+∠DCB=70°,

∴∠BDC=180°−70°=110°,

故答案为:110°.【点睛】此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键.16、1【解析】试题解析:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.17、【分析】根据角平分线的定义以及三角形外角的性质,可知:∠A1=∠A,∠A2=∠A1=∠A,…,以此类推,即可得到答案.【详解】∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A1CD=∠A1+∠A1BC,即:∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD−∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD−∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知:∠A2020=∠A=.故答案为:.【点睛】本题主要考查三角形的外角的性质,以及角平分线的定义,掌握三角形的外角等于不相邻的内角的和,是解题的关键.18、10°【分析】由余角的性质,得到∠ACB=50°,由AD=DC,得∠ACD=40°,即可求出∠BCD的度数.【详解】解:在△ABC中,∠B=90°,∠BAC=40°,∴∠ACB=50°,∵AD=DC,∴∠ACD=∠A=40°,∴∠BCD=50°40°=10°;故答案为:10°.【点睛】本题考查了等边对等角求角度,余角的性质解题的关键是熟练掌握等边对等角的性质和余角的性质进行解题.三、解答题(共78分)19、(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.20、(1);(2)见解析【分析】(1)在△CDE中根据等腰三角形的性质和三角形内角和定理得到∠ECD的度数.在△ACD中,根据三角形外角的性质即可得出结论;(2)在△CDE中,根据等腰三角形的性质得到∠ECD=∠CED,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC.由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF⊥DC于点F,得到∠DEF=∠EDC=45°,即有EF=DF,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED,等量代换得到EG=DC,即可得到结论.【详解】∵等腰中,,,∴.又∵CD=DE,,∴,∴;(2)∵CD=DE,∴.又∵,∴.∵,∴.∵,∴,∴,∴.∵于点,∴,∴,,∴,∴,∴,∴.【点睛】本题考查了等腰三角形的判定与性质.灵活运用等腰三角形的性质及三角形外角的性质是解答本题的关键.21、(1)见解析;(2)作图见解析,【分析】根据三角形在坐标中的位置,将每个点分别平移,即可画出平移后的图象.【详解】解:(1)、(2)如图:∴点A,B,C的坐标分别为:,,.【点睛】本题考查了平移,轴对称的知识,解题的关键是熟练掌握作图的方法.22、(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)该公司购买甲型和乙型机器人分别是4台和4台才能使得每小时的分拣量最大.【解析】(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元,列方程组,解方程组即可;(2)首先设该公可购买甲型机器人a台,乙型机器人(8-a)台,根据总费用不超过41万元,求出a的范围,再求出最大分拣量的分配即可.【详解】(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)设该公可购买甲型机器人a台,乙型机器人(8-a)台,根据题意得6a+4(8-a)≤41解这个不等式得0<a≤,∵a为正整数,∴a的取值为1,2,3,4,∵甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,∴该公司购买甲型和乙型机器人分别是4台和4台才能使得每小时的分拣量最大.【点睛】本题考查的是二元一次方程组和一元一次不等式的实际应用,熟练掌握这两点是解题的关键.23、(1)见解析;(2)见解析;(3)1﹣1.【分析】(1)由∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∠ADB=∠EDC,锝∠ABD=∠ACF,根据ASA即可证明△ABD≌△ACF,(2)由△ABD≌△ACF,得BD=CF,根据ASA证明△FBE≌△CBE,得EF=EC,进而得到结论;(3)过点D作DM⊥BC于点M,由BD是∠ABC的平分线,得AD=DM,由∠ACB=41°,得CD==,进而即可得到答案.【详解】(1)△ABD≌△ACF,理由如下:∵∠BAC=90°,BD⊥CE,∴∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∵∠ADB=∠EDC,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA);(2)∵△ABD≌△ACF,∴BD=CF,∵BD是∠ABC的平分线,∴∠FBE=∠CBE,在△FBE和△CBE中,,∴△FBE≌△CBE(ASA),∴EF=EC,∴CF=2CE,∴BD=2CE;(3)过点D作DM⊥BC于点M,∵BD是∠ABC的平分线,,∴AD=DM,∵=1,∴∠ACB=41°,∴CD==,∴AD+CD=AD+=AC=1,∴AD==1﹣1.故答案是:1﹣1.【点睛】本题主要考查全等三角形的判定和性质定理以及等腰直角三角形的性质定理,掌握三角形全等的判定定理,是解题的关键.24、(1)(,2);(2)y=x﹣;(3)E的坐标为(,)或(6,8)【分析】(1)把点E的纵坐标代入直线解析式,求出横坐标,得到点E的坐标,根据融合点的定义求求解即可;

(2)设点E的坐标为(a,a+2),根据融合点的定义用a表示出x、y,整理得到答案;

(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论