湖北省枣阳市鹿头中学2024届高三数学试题模拟试卷(二)数学试题_第1页
湖北省枣阳市鹿头中学2024届高三数学试题模拟试卷(二)数学试题_第2页
湖北省枣阳市鹿头中学2024届高三数学试题模拟试卷(二)数学试题_第3页
湖北省枣阳市鹿头中学2024届高三数学试题模拟试卷(二)数学试题_第4页
湖北省枣阳市鹿头中学2024届高三数学试题模拟试卷(二)数学试题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省枣阳市鹿头中学2024届高三数学试题模拟试卷(二)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.2.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A. B. C. D.3.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为()A. B. C. D.4.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.已知函数,若,则的值等于()A. B. C. D.6.已知集合,则()A. B. C. D.7.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.8.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.9.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96 B.84 C.120 D.36010.的展开式中的系数是()A.160 B.240 C.280 D.32011.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.3612.复数(为虚数单位),则等于()A.3 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.14.设,分别是定义在上的奇函数和偶函数,且,则_________15.若,则__________.16.展开式中项系数为160,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.18.(12分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.19.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)求证:在上存在唯一的极大值;(Ⅲ)直接写出函数在上的零点个数.20.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.21.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.22.(10分)已知函数.(1)解关于的不等式;(2)若函数的图象恒在直线的上方,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【题目详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【题目点拨】本题主要考查了等差数列的基本量的求解,属于基础题.2、C【解题分析】

先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【题目详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【题目点拨】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.3、D【解题分析】

由题意画出图形,找出△PAB外接圆的圆心及三棱锥P﹣BCD的外接球心O,通过求解三角形求出三棱锥P﹣BCD的外接球的半径,则答案可求.【题目详解】如图;设AB的中点为D;∵PA,PB,AB=4,∴△PAB为直角三角形,且斜边为AB,故其外接圆半径为:rAB=AD=2;设外接球球心为O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2⇒R2=(R)2+r2⇒R;∴球O的表面积为:4πR2=4π.故选:D.【题目点拨】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.4、C【解题分析】

根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【题目详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【题目点拨】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.5、B【解题分析】

由函数的奇偶性可得,【题目详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B【题目点拨】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数6、B【解题分析】

计算,再计算交集得到答案【题目详解】,表示偶数,故.故选:.【题目点拨】本题考查了集合的交集,意在考查学生的计算能力.7、C【解题分析】

将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【题目详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【题目点拨】此题考查双曲线的标准方程和离心率的概念,属于基础题.8、D【解题分析】

根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【题目详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【题目点拨】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.9、B【解题分析】

2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.10、C【解题分析】

首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【题目详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【题目点拨】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.11、B【解题分析】

方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.12、D【解题分析】

利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【题目详解】,所以,,故选:D.【题目点拨】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

画图直观图可得该几何体为棱锥,再计算高求解体积即可.【题目详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:.故答案为:.【题目点拨】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意14、1【解题分析】

令,结合函数的奇偶性,求得,即可求解的值,得到答案.【题目详解】由题意,函数分别是上的奇函数和偶函数,且,令,可得,所以.故答案为:1.【题目点拨】本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】

由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【题目详解】,得,在等式两边平方得,解得.故答案为:.【题目点拨】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.16、-2【解题分析】

表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【题目详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【题目点拨】本题考查由二项式指定项的系数求参数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)乙同学正确;(2).【解题分析】

(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【题目详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:021212由上表可知,“理想数据”的个数为.用列举法可知,从个不同数据里抽出个不同数据的方法有种.从符合条件的个不同数据中抽出个,还要在不符合条件的个不同数据中抽出个的方法有种.故所求概率为【题目点拨】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.18、;证明见解析.【解题分析】

当时,集合共有个子集,即可求出结果;分类讨论,利用数学归纳法证明.【题目详解】当时,集合共有个子集,所以;①当时,,由可知,,此时令,,,,满足对任意,都有,且;②假设当时,存在有序集合组满足题意,且,则当时,集合的子集个数为个,因为是4的整数倍,所以令,,,,且恒成立,即满足对任意,都有,且,综上,原命题得证.【题目点拨】本题考查集合的自己个数的研究,结合数学归纳法的应用,属于难题.19、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)函数在有3个零点.【解题分析】

(Ⅰ)求出导数,写出切线方程;(Ⅱ)二次求导,判断单调递减,结合零点存在性定理,判断即可;(Ⅲ),数形结合得出结论.【题目详解】解:(Ⅰ),,,故在点,处的切线方程为,即;(Ⅱ)证明:,,,故在递减,又,,由零点存在性定理,存在唯一一个零点,,当时,递增;当时,递减,故在只有唯一的一个极大值;(Ⅲ)函数在有3个零点.【题目点拨】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题.20、(1)证明见解析,;(2)证明见解析【解题分析】

(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【题目详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【题目点拨】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.21、(1)(2)【解题分析】

(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解.【题目详解】(1)∵是等比数列,且成等差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论