湖北省黄冈市麻城市2023年八年级数学第一学期期末检测试题含解析_第1页
湖北省黄冈市麻城市2023年八年级数学第一学期期末检测试题含解析_第2页
湖北省黄冈市麻城市2023年八年级数学第一学期期末检测试题含解析_第3页
湖北省黄冈市麻城市2023年八年级数学第一学期期末检测试题含解析_第4页
湖北省黄冈市麻城市2023年八年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市麻城市2023年八年级数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各式计算正确的是()A. B. C. D.2.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分3.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16cm B.28cm C.26cm D.18cm4.对甲、乙、丙、丁四人进行射击测试,结果平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是()A.丁 B.丙 C.乙 D.甲5.当时,代数式的值为().A.7 B. C. D.16.下列因式分解结果正确的是()A. B.C. D.7.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A. B. C. D.8.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了,下坡用了,根据题意可列方程组()A. B.C. D.10.如果,那么代数式的值是().A.2 B. C. D.11.如图,在平面直角坐标系中,直线l1:与直线l2:交于点A(,b),则关于x、y的方程组的解为()A. B. C. D.12.已知点与点关于轴对称,那么的值为()A. B. C. D.二、填空题(每题4分,共24分)13.已知函数y=x+m-2019(m是常数)是正比例函数,则m=____________14.若一个正方形的面积为,则此正方形的周长为___________.15.若分式的值为0,则的值为____________.16.因式分解:(a+b)2﹣64=_____.17.已知2x+3y﹣1=0,则9x•27y的值为______.18.如图,已知四点在同一直线上,,请你填一个直接条件,_________,使.三、解答题(共78分)19.(8分)阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.20.(8分)如图,点B,F,C,E在一条直线上BF=CE,AC=DF.(1)在下列条件①∠B=∠E;②∠ACB=∠DFE;③AB=DE;④AC∥DF中,只添加一个条件就可以证得△ABC≌△DEF,则所有正确条件的序号是.(2)根据已知及(1)中添加的一个条件证明∠A=∠D.21.(8分)计算题:化简:先化简再求值:,其中22.(10分)△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有个.23.(10分)如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是______________(SSS,SAS,ASA,AAS从其中选择一个);(2)∠ACB与∠ABC的数量关系为:___________________24.(10分)如图1,在边长为3的等边中,点从点出发沿射线方向运动,速度为1个单位/秒,同时点从点出发,以相同的速度沿射线方向运动,过点作交射线于点,连接交射线于点.(1)如图1,当时,求运动了多长时间?(2)如图1,当点在线段(不考虑端点)上运动时,是否始终有?请说明理由;(3)如图2,过点作,垂足为,当点在线段(不考虑端点)上时,的长始终等于的一半;如图3,当点运动到的延长线上时,的长是否发生变化?若改变,请说明理由;若不变,求出的长.25.(12分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=26.如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.(1)求证:CQ⊥BC.(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据整式的运算法则次进行判断即可.【详解】解:A.,故A错误;B.不能进行合并,故B错误;C.根据同底数幂相除的运算法则可知:,故C错误;D.根据同底数幂相乘,底数不变指数相加可知:,故D正确.故选D.【点睛】本题考查了整式的运算,掌握整式的各种运算法则是解题的关键.2、C【解析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、B【分析】由线段垂直平分线的性质,可得AD=CD,然后,根据三角形的周长和等量代换,即可解答.【详解】∵DE是△ABC中边AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18cm+10cm=28cm.故选:B.【点睛】本题主要了考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.4、A【分析】先比较四位选手的方差的大小,根据方差的性质解答即可.【详解】∵2.93>1.75>0.50>0.4,

∴丁的方差最小,

∴成绩最稳定的是丁,

故选:A.【点睛】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、B【分析】把代入即可求解.【详解】把代入得3-4=-1故选B.【点睛】此题主要考查代数式求值,解题的关键把x的值代入.6、D【分析】利用提取公因式法、完全平方公式逐项进行因式分解即可.【详解】解:A、原式,故本选项不符合题意;B、原式,故本选项不符合题意;C、原式,故本选项不符合题意;D、原式,故本选项符合题意,故选:D.【点睛】本题考查了提公因式法与公式法分解因式,属于基础题,关键是掌握因式分解的方法.7、A【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m,代入计算即可得到结果.【详解】设小长方形的长为a,宽为b,

上面的长方形周长:2(m-a+n-a),下面的长方形周长:2(m-2b+n-2b),

两式联立,总周长为:2(m-a+n-a)+2(m-2b+n-2b)=4m+4n-4(a+2b),

∵a+2b=m(由图可得),

∴阴影部分总周长为4m+4n-4(a+2b)=4m+4n-4m=4n.

故选:A.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8、A【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.9、B【分析】根据路程=时间乘以速度得到方程,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴,∴,故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.10、A【解析】(a-)·=·=·=a+b=2.故选A.11、C【解析】试题解析:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(-1,b),∴当x=-1时,b=-1+3=2,∴点A的坐标为(-1,2),∴关于x、y的方程组的解是.故选C.【点睛】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.12、A【分析】根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点与点关于轴对称,,,∴,故选:A.【点睛】此题主要考查了关于轴对称点的坐标,关键是掌握点的坐标的变化规律.二、填空题(每题4分,共24分)13、1【分析】根据正比例函数的定义,m-1=0,从而求解.【详解】解:根据题意得:m-1=0,解得:m=1,故答案为1.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.14、【分析】由正方形的面积是边长的平方,把分解因式得边长,从而可得答案.【详解】解:正方形的边长是:正方形的周长是:故答案为:【点睛】本题考查的是因式分解,掌握利用完全平方式分解因式是解题关键.15、-4【分析】分式等于零时:分子等于零,且分母不等于零.【详解】由分式的值为零的条件得且,由,得,由,得,综上所述,分式的值为0,的值是−4.故答案为:−4.【点睛】此题考查分式的值为零的条件,解题关键在于掌握其性质.16、(a+b﹣8)(a+b+8)【分析】直接利用平方差公式分解因式得出答案.【详解】解:(a+b)2﹣64=(a+b﹣8)(a+b+8).故答案为(a+b﹣8)(a+b+8).【点睛】此题主要考查了平方差公式分解因式,正确应用公式是解题关键.17、1【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:∵2x+1y﹣1=0,∴2x+1y=1.

∴9x•27y=12x×11y=12x+1y=11=1.

故答案为:1.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.18、∠ACF=∠DBE(或∠E=∠F,或AF=DE)【分析】根据全等三角形的判定,可得答案.【详解】解:∵AB=CD,∴AB+BC=CD+BC,即AC=BD.∵;添加∠ACF=∠DBE,可利用ASA证明;添加∠E=∠F,可利用AAS证明;添加AF=DE,可利用SAS证明;故答案为:∠ACF=∠DBE(或∠E=∠F,或AF=DE)【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定并选择适当的方法证明是解题关键.三、解答题(共78分)19、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【详解】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:全等三角形的判定和性质;三角形的三边关系定理.20、(1)②③④;(2)添加条件∠ACB=∠DFE,理由详见解析.【分析】(1)由全等三角形的判定方法即可得出答案;(2)答案不唯一,添加条件∠ACB=∠DFE,证明△ABC≌△DEF(SAS);即可得出∠A=∠D.【详解】解:(1)①在△ABC和△DEF中,BC=EF,AC=DF,∠B=∠E,不能判定△ABC和△DEF全等;②∵BF=CE,∴BF+CF=CE+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);③在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);④∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:②③④;(2)答案不惟一.添加条件∠ACB=∠DFE,理由如下:∵BF=EC,∴BF+CF=EC+CF.∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴∠A=∠D.【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.21、(1);(2);.【分析】(1)先分别计算乘方,再将结果进行乘除计算;(2)先计算括号内的易分母分式减法,再计算除法,最后计算减法,化简后将x的值代入计算求出结果.【详解】解:,,,;,,,当时,原式.【点睛】此题考查分式的混合运算,化简求值运算,掌握正确的计算顺序是混合计算的关键.22、(1)作图见解析,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)见解析;(3)1.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,根据平移的性质和轴对称的性质先找出对应顶点的坐标,顺次连接即可;

(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小;

(3)在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,即可得到Q点的数量.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求,根据图形可得,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);

(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;

(3)根据点Q在y轴上且满足△ACQ为等腰三角形,在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,可得这样的Q点有1个.

故答案为:1.【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,多数情况要作点关于某直线的对称点.23、SAS∠ACB=2∠ABC【解析】试题分析:(1)根据已知以及作法可知可以利用SAS判定△ABD与△AED全等;(2)根据△ABD≌△AED,可得∠B=∠E,由作法可知CE=CD,从而得∠E=∠CDE,再利用三角形外角的性质即可得∠ACB=2∠ABC.试题解析:(1)延长AC到E,使CE=CD,连接DE,∵AB=AC+CD,AE=AC+CE,∴AE=AB,又∵AD是∠BAC的平分线,∴∠BAD=∠CAD,又AD是公共边,∴△ABD≌△AED(SAS),故答案为SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B,故答案为∠ACB=2∠B.【点睛】本题考查了三角形全等的判定与性质,等腰三角形的性质、三角形的外角等,正确添加辅助线是解题的关键.24、(1)运动了1秒;(2)始终有,证明见解析;(3)不变,.【分析】(1)设运动了秒,则,,,根据列方程求解即可;(2)先证明DE=CF,然后根据“ASA”证明,从而可证始终有;(3)根据DE//BC得出∠ADE=∠B=60°,然后再在利用等边三角形的性质得出,再证明,得到,根据可解.【详解】解:(1)设运动了秒,则,,,当时,∵,∴,∴,即,解得,∴运动了1秒.(2)∵,∴,∴是等边三角形,∴∵∴又∵∴,.在与中∴∴;(3)不变.理由:∵,∴,∴是等边三角形,∵,∴,在与中,∴,∴,∴,∴.【点睛】本题主要考查了等边三角形的性质,一元一次方程的应用,平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.25、(1)详见解析;(2)不变,AE=CG,详见解析;(3)CM【分析】(1)如图①,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(2)如图②,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(3)如图③,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出结论.【详解】(1)证明:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BCD.在△BCG和△CAE中,∴△BCG≌△CAE(ASA),∴AE=CG.(2)解:不变,AE=CG理由如下:∵AC=BC,∴∠ABC=∠A.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论