版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省随州市高新区四校2023-2024学年八年级数学第一学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若是完全平方式,则的值为()A.±8 B.或 C. D.2.如图,,,与交于点,点是的中点,.若,,则的长是()A. B.C.3 D.53.四边形ABCD中,若∠A+∠C+∠D=280°,则∠B的度数为()A.80°B.90°C.170°D.20°4.如果是一个完全平方式,则n值为()A.1; B.-1; C.6; D.±1.5.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.2018 B.2019 C.2020 D.20216.电话卡上存有4元话费,通话时每分钟话费元,则电话卡上的余额(元)与通话时间(分钟)之间的函数图象是图中的()A. B.C. D.7.已知等腰三角形的一边长为2,周长为8,那么它的腰长为()A.2 B.3 C.2或3 D.不能确定8.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种 B.4种 C.3种 D.2种9.下列能作为多边形内角和的是()A. B. C. D.10.如图,已知,下列结论:①;②;③;④;⑤;⑥;⑦.其中正确的有()A.个 B.个 C.个 D.个11.如果,且,那么点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列计算正确的是()A.a3+a2=a5 B.a6÷(﹣a3)=﹣a3C.(﹣a2)3=a6 D.二、填空题(每题4分,共24分)13.分解因式________________.14.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.15.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.16.如图,点E为∠BAD和∠BCD平分线的交点,且∠B=40°,∠D=30°,则∠E=_____.17.八年级数学教师邱龙从家里出发,驾车去离家的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的1.5倍匀速行驶,并提前40分钟到达风景区;第二天返回时以去时原计划速度的1.2倍行驶回到家里.那么来回行驶时间相差_________分钟.18.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为_______.三、解答题(共78分)19.(8分)两个一次函数l1、l2的图象如图:(1)分别求出l1、l2两条直线的函数关系式;(2)求出两直线与y轴围成的△ABP的面积;(3)观察图象:请直接写出当x满足什么条件时,l1的图象在l2的下方.20.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(8分)如图,平面直角坐标系中,A,B,以B点为直角顶点在第二象限内作等腰Rt△ABC.(1)求点C的坐标;(2)求△ABC的面积;(3)在y轴右侧是否存在点P,使△PAB与△ABC全等?若存在,直接写出点P的坐标,若不存在,请说明理由.22.(10分)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、BE.(1)请你找出图中其他的全等三角形;(2)试证明CF=EF.23.(10分)把下列各式因式分解:(1)(2)24.(10分)如图,和是等腰直角三角形,,,,点在的内部,且.图1备用图备用图(1)猜想线段和线段的数量关系,并证明你的猜想;(2)求的度数;(3)设,请直接写出为多少度时,是等腰三角形.25.(12分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.26.某校为了体育活动更好的开展,决定购买一批篮球和足球.据了解:篮球的单价比足球的单价多20元,用1000元购买篮球的个数与用800元购买足球的个数相同.(1)篮球、足球的单价各是多少元?(2)若学校打算购买篮球和足球的数量共100个,且购买的总费用不超过9600元,问最多能购买多少个篮球?
参考答案一、选择题(每题4分,共48分)1、B【分析】利用完全平方公式的结构特征得到关于m的方程,求解即可.【详解】解:∵是完全平方式,∴2(m-1)=±8解得m=5或m=-1.故选:B【点睛】本题考查了完全平方式,熟练掌握完全平方式的特点是解题的关键.2、C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB⊥AF,
∴∠FAB=90°,
∵点D是BC的中点,
∴AD=BD=BC=4,
∴∠DAB=∠B,
∴∠ADE=∠B+∠BAD=2∠B,
∵∠AEB=2∠B,
∴∠AED=∠ADE,
∴AE=AD,∴AE=AD=4,
∵EF=,EF⊥AF,
∴AF=3,
故选:C.【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.3、A【解析】试题分析:四边形的内角和为360°,∴∠B=360°-(∠A+∠C+∠D)=360°-280°=80°,故选A.4、D【解析】如果是一个完全平方式则【详解】,则,正确答案选D.【点睛】本题考查学生对完全平方式概念的理解和掌握,学会将一个式子配凑成完全平方式是解答本题的关键.5、D【分析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求出“生长”2020次后形成图形中所有正方形的面积之和.【详解】解:设直角三角形的是三条边分别是a,b,c.
根据勾股定理,得a2+b2=c2,
即正方形A的面积+正方形B的面积=正方形C的面积=1.正方形D的面积+正方形E的面积+正方形F的面积+正方形G的面积=正方形A的面积+正方形B的面积=正方形C的面积=1.
推而广之,即:每次“生长”的正方形面积和为1,“生长”了2020次后形成的图形中所有的正方形的面积和是2×1=2.
故选D.【点睛】此题考查了正方形的性质,以及勾股定理,其中能够根据勾股定理发现每一次得到的新的正方形的面积和与原正方形的面积之间的关系是解本题的关键.6、D【分析】根据当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.据此判断即可.【详解】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.
∴,
故只有选项D符合题意.
故选:D.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7、B【分析】根据等腰三角形性质和已知条件,进行分类讨论,即可得到答案,要注意的是一定要符合构成三角形的三边关系.【详解】已知三角形一边长为2,(1)当这一边是等腰三角形的腰时,它的腰长就为2,则底边是4根据三角形三边关系,这种情况不符合条件;(2)当这一边是等腰三角形的底边时∵周长为8,底边为2∴腰长为:=3(等腰三角形两腰相等)根据三角形三边关系,这种情况符合条件;综上所述,这个等腰三角形的腰长为3.故答案选B.【点睛】本题考查了三角形的三边关系与等腰三角形的性质,解题的关键是熟练的掌握三角形的三边关系与等腰三角形的性质.8、C【解析】试题分析:设住3人间的需要有x间,住2人间的需要有y间,则根据题意得,3x+2y=17,∵2y是偶数,17是奇数,∴3x只能是奇数,即x必须是奇数.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x>5时,y<1.∴她们有3种租住方案:第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的.故选C.9、D【分析】用以上数字分别除以180,判断商是否为整数,即可得出答案.【详解】A:312340°÷180°≈1735.2,故A错误;B:211200°÷180°≈1173.3,故B错误;C:200220°÷180°≈1112.3,故C错误;D:222120°÷180°=1234,故D正确;故答案选择D.【点睛】本题考查的是多边形的内角和公式:(n-2)×180°,其中n为多边形的边数.10、C【分析】利用得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵∴故①正确;②∵∴即:,故②正确;③∵∴;∴即:,故③正确;④∵∴;∴,故④正确;⑤∵∴,故⑤正确;⑥根据已知条件不能证得,故⑥错误;⑦∵∴;∴,故⑦正确;故①②③④⑤⑦,正确的6个.故选C.【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.11、B【分析】根据,且可确定出a、b的正负情况,再判断出点的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵,且,∴∴点在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、B【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式的加减运算法则化简得出答案.【详解】解:A、,无法合并;B、,正确;C、,故此选项错误;D、,故此选项错误;故选:B.【点睛】此题主要考查了分式的加减运算、同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.二、填空题(每题4分,共24分)13、【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴.故答案为:【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.14、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).15、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.16、35°.【分析】根据两个三角形的有一对对顶角相等得:∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,两式相加后,再根据角平分线的定义可得结论.【详解】解:∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=(∠B+∠D)∴∠E=(30°+40°)=×70°=35°;故答案为:35°;【点睛】此题考查了三角形内角和定理、角平分线的定义,掌握角平分线的定义和等量代换是解决问题的关键.17、1【分析】设从家到风景区原计划行驶速度为xkm/h,根据“实际时间=计划时间-”得出方程,求出原计划的行驶速度,进而计算出从家到风景区所用的时间以及回家所用的时间,即可得出结论.【详解】设从家到风景区原计划行驶速度为xkm/h,根据题意可得:1,解得:x=60,检验得:x=60是原方程的根.∴第一天所用的时间=(小时),第二天返回时所用时间=180÷(60×1.2)=2.5(小时),时间差=2.5-=(小时)=1(分钟).故答案为:1.【点睛】本题考查了分式方程的应用,正确得出方程是解答本题的关键.18、3【分析】首先求出第三边长的取值范围,选取整数即可.【详解】∵三角形的两边长分别为1和3,∴设第三边长为x,则第三边长的取值范围为2<x<4,且三边长均为整肃,∴第三边长为3.【点睛】本题考查了三角形第三边的取值范围,掌握三角形三边关系是解题的关键.三、解答题(共78分)19、⑴函数l1的解析式是y=2x-4,函数l2的解析式是y=x+2;⑵12;⑶当x<4时,l1的图象在l2的下方.【分析】(1)设直线l1的解析式是y=kx+b(k≠0),把点(2,0),(0,-4)分别代入函数解析式列出关于系数k、b的方程组,通过解方程组来求它们的值.同理有可求出直线l2的解析式.(2)联系两个解析式,通过解方程组可以求得交点P的坐标,然后利用三角形的面积公式进行解答即可.(3)根据图示直接写出答案.【详解】(1)设直线l1的解析式是y=kx+b(k≠0),把点(2,0),(0,-4)分别代入y=kx+b,得,解得k=2,b=-4∴直线l1的解析式是y=2x-4.同理,直线l2的解析式是y=x+2.(2)解方程解得:,故两条直线的交点P的坐标为(4,4).∴两直线与y轴围成的△ABP的面积是:.(3)根据图示知,当x<4时,l1的图象在l2的下方.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图像上点的坐标特征以及函数图像交代问题.解题时,一定要数形结合.20、证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.21、(1);(2)6.5;(3)存在,或.理由见详解.【分析】(1)过点C作CD⊥y轴交于点D,从而易证△AOB≌△BDC,进行根据三角形全等的性质及点的坐标可求解;(2)根据勾股定理及题意可求AB的长,然后由(1)及三角形面积公式可求解;(3)由题意可得若使△PAB与△ABC全等,则有两种情况:①若∠ABP=90°,如图1,作CM⊥轴于点M,作PN⊥轴于点N;②若∠BAP=90°,如图2,此时,CA=B,CA∥B,线段B可由线段CA平移得到;进而可求解.【详解】解:(1)过点C作CD⊥y轴交于点D,如图所示:A,B,OA=2,OB=3,△ABC是等腰直角三角形,AB=BC,∠ABC=90°,∠ABO+∠BAO=90°,∠ABO+∠CBD=90°,∠BAO=∠CBD,又∠AOB=∠CDB=90°,△AOB≌△BDC,BD=OA=2,BO=CD=3,OD=3+2=5,;(2)由(1)可得:OA=2,OB=3,在Rt△AOB中,,;(3)要使△PAB与△ABC全等,则△PAB也为等腰直角三角形,即:①若∠ABP=90°,如图1,作CM⊥轴于点M,作PN⊥轴于点N,△ABP≌△ABC,BC=BP,∠CMB=∠PNB=90°,∠CBM=∠PBN,△CMB≌△PNB,由(1)可得:CM=PN=3,BN=BM=2,ON=1,P;②若∠BAP=90°,如图2,此时,CA=,CA∥,线段可由线段CA平移得到;点C平移到点B,点A平移到点,故点的坐标为综上,存在两个满足条件的点P,坐标为或.【点睛】本题主要考查平面直角坐标系的几何问题,熟练掌握等腰直角三角形的性质及平面直角坐标系点的坐标是解题的关键.22、(1)图中其它的全等三角形为:①△ACD≌△AEB,②△DCF≌△BEF;(2)证明过程见解析;【分析】(1)图中除了已知的Rt△ABC≌Rt△ADE,还有①△ACD与△AEB,②△DCF与△BEF,根据全等三角形的性质可得AC=AE,AB=AD,∠BAC=∠DAE,进一步即可根据SAS判断①中两个三角形应是全等关系,然后根据这两对全等三角形的性质即可判断②中两个三角形的关系,问题从而解决;(2)根据全等三角形的性质和SAS可证△CAD≌△EAB,然后根据全等三角形的性质可得∠ACB=∠AED,∠ACD=∠AEB,CD=BE,再利用AAS即可证明△CDF≌△EBF,进一步即可推出结论.【详解】解:(1)图中其它的全等三角形为:①△ACD≌△AEB,②△DCF≌△BEF;①∵Rt△ABC≌Rt△ADE,∴AC=AE,AB=AD,∠BAC=∠DAE,∵∠BAC﹣∠BAD=∠DAE﹣∠BAD,∴∠DAC=∠BAE,在△ADC和△ABE中,∵AC=AE,AD=AB,∠DAC=∠BAE,∴△ADC≌△ABE(SAS);②∵Rt△ABC≌Rt△ADE,△ADC≌△ABE,∴∠ACB=∠AED,∠ACD=∠AEB,DC=BE,∴∠DCF=∠BEF,在△DCF和△BEF中,∵∠CFD=∠EFB,∠DCF=∠BEF,DC=BE,∴△CDF≌△EBF(AAS).(2)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB(SAS),∵Rt△ABC≌Rt△ADE,△ADC≌△ABE,∴∠ACB=∠AED,∠ACD=∠AEB,DC=BE,∴∠DCF=∠BEF,在△DCF和△BEF中,∵∠CFD=∠EFB,∠DCF=∠BEF,DC=BE,∴△CDF≌△EBF(AAS)∴CF=EF.【点睛】本题主要考查了全等三角形的判定和性质,属于常考题型,灵活应用全等三角形的判定和性质是解题的关键.23、(1);(2)【分析】(1)直接提取公因式,再利用平方差公式分解因式即可;(2)直接提取公因式-y,再利用完全平方公式分解因式即可.【详解】解:(1)(2)【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24、(1),证明见解析;(2);(3)为或或【分析】(1)EB=DC,证明△AEB≌△ADC,可得结论;(2)如图1,先根据三角形的内角和定理可得∠ECB+∠EBC=50°,根据直角三角形的两锐角互余得:∠ACB+∠ABC=90°,所以∠ACE+∠ABE=90°−50°=40°,由(1)中三角形全等可得结论;(3)△CED是等腰三角形时,有三种情况:①当DE=CE时,②当DE=CD时,③当CE=CD时,根据等腰三角形等边对等角可得的值.【详解】解:(1)证明:在与中,;(2),,,,又是等腰直角三角形,,四边形中,;(3)当△CED是等腰三角形时,有三种情况
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初一北京上册数学试卷
- 基于传递矩阵法的层状土中管桩纵向振动响应研究
- 混合配筋钢纤维再生混凝土梁受弯性能研究
- 小班幼儿在积木游戏中的学习品质调查研究
- 长江经济带新型城镇化与交通运输耦合协调发展研究
- 二零二五年度铲车司机夜间作业安全保障合同
- 二零二五年度医疗健康产业股权变更合同终止书
- 二零二五年度隐名股东投资股权代持合同补充协议
- 2025年度股权委托代持与公司治理优化服务协议
- 二零二五年度舞台剧演员演出合作协议
- 四川省成都市武侯区2023-2024学年九年级上学期期末考试化学试题
- 教育部《中小学校园食品安全和膳食经费管理工作指引》知识培训
- 初一到初三英语单词表2182个带音标打印版
- 2024年秋季人教版七年级上册生物全册教学课件(2024年秋季新版教材)
- 环境卫生学及消毒灭菌效果监测
- 2024年共青团入团积极分子考试题库(含答案)
- 碎屑岩油藏注水水质指标及分析方法
- 【S洲际酒店婚礼策划方案设计6800字(论文)】
- 铁路项目征地拆迁工作体会课件
- 医院死亡报告年终分析报告
- 中国教育史(第四版)全套教学课件
评论
0/150
提交评论