黑龙江省齐齐哈尔市名校2023-2024学年八上数学期末检测模拟试题含解析_第1页
黑龙江省齐齐哈尔市名校2023-2024学年八上数学期末检测模拟试题含解析_第2页
黑龙江省齐齐哈尔市名校2023-2024学年八上数学期末检测模拟试题含解析_第3页
黑龙江省齐齐哈尔市名校2023-2024学年八上数学期末检测模拟试题含解析_第4页
黑龙江省齐齐哈尔市名校2023-2024学年八上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐齐哈尔市名校2023-2024学年八上数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果不等式组恰有3个整数解,则的取值范围是()A. B. C. D.2.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A.200元 B.250元 C.300元 D.3503.如图,点的坐标为(3,4),轴于点,是线段上一点,且,点从原点出发,沿轴正方向运动,与直线交于,则的面积()A.逐渐变大 B.先变大后变小 C.逐渐变小 D.始终不变4.如图,△ABC≌△ADE,∠B=25°,∠E=105°,∠EAB=10°,则∠BAD为()A.50° B.60° C.80° D.120°5.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80809090则这四名同学四次数学测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. C.4-2 D.3-47.要使分式有意义,则x的取值范围是()A. B. C. D.8.如图,已知为的中点,若,则()A.5 B.6 C.7 D.9.圆柱形容器高为18,底面周长为24,在杯内壁离杯底4的处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁,离杯上沿2与蜂蜜相对的处,则蚂蚁从外壁处到内壁处的最短距离为()A.19 B.20 C.21 D.2210.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.7.7× B. C. D.二、填空题(每小题3分,共24分)11.我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置.经测算,原来天用水吨,现在这些水可多用4天,现在每天比原来少用水________吨.12.若分式的值为0,则的值是_____.13.已知点A(a,1)与点B(5,b)关于y轴对称,则=_____.14.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为____(用含a、b的代数式表示).15.若实数x,y满足y=+3,则x+y=_____.16.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为_____.17.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是_____(填序号).18.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.三、解答题(共66分)19.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.20.(6分)如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=10°,则∠DEC=度;(1)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图1,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH1+CH1=1AE1.21.(6分)小李在某商场购买两种商品若干次(每次商品都买),其中前两次均按标价购买,第三次购买时,商品同时打折.三次购买商品的数量和费用如下表所示:购买A商品的数量/个购买B商品的数量/个购买总费用/元第一次第二次第三次(1)求商品的标价各是多少元?(2)若小李第三次购买时商品的折扣相同,则商场是打几折出售这两种商品的?(3)在(2)的条件下,若小李第四次购买商品共花去了元,则小李的购买方案可能有哪几种?22.(8分)已知.求作:,使(1)如图1,以点为圆心,任意长为半径画弧,分别交,于点,;(2)如图2,画一条射线,以点为圆心,长为半径画弧,交于点;(3)以点为圆心,长为半径画弧,与第2步中所画的弧交于点;(4)过点画射线,则.根据以上作图步骤,请你证明.23.(8分)用合适的方法解方程组:(1)(2).24.(8分)如图,已知点D在△ABC的边AB上,且AD=CD,(1)用直尺和圆规作∠BDC的平分线DE,交BC于点E(不写作法,保留作图痕迹);(2)在(1)的条件下,判断DE与AC的位置关系,并写出证明过程.25.(10分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工程所需的时间比是5:3,两队共同施工15天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工15天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?26.(10分)如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”求解即可.【详解】∵不等式组恰有3个整数解,∴.故选D.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.2、C【解析】试题分析:先求出总支出,再根据用于食物上的支出占总支出的30%即可得出结论.解:∵用于衣服上的支是200元,占总支出的20%,∴总支出==1000(元),∴用于食物上的支出=1000×30%=300(元).故选C.考点:扇形统计图.3、D【分析】根据已知条件得到OA=4,AC=3,求得AD=1,OD=3,设E,即可求得BC直线解析式为,进而得到B点坐标,再根据梯形和三角形的面积公式进行计算即可得到结论.【详解】∵点C的坐标为(3,4),CA⊥y轴于点A,∴OA=4,AC=3,∵OD=3AD,∴AD=1,OD=3,∵CB与直线交于点E,∴设E,设直线BC的解析式为:将C(3,4)与E代入得:,解得∴直线BC解析式为:令y=0,则解得∴S△CDE=S梯形AOBC-S△ACD-S△DOE-S△OBE==所以△CDE的面积始终不变,故选:D.【点睛】本题考查了一次函数中的面积问题,解题的关键是求出BC直线解析式,利用面积公式求出△CDE的面积.4、B【分析】先根据全等三角形的对应角相等得出B=∠D=25°,再由三角形内角和为180°,求出∠DAE=50°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【详解】解:∵△ABC≌△ADE,∴∠B=∠D=25°,又∵∠D+∠E+∠DAE=180°,∠E=105°,∴∠DAE=180°-25°-105°=50°,∵∠EAB=10°,∴∠BAD=∠DAE+∠EAB=60°.故选B.【点睛】本题主要考查了全等三角形的性质,三角形内角和定理.综合应用全等三角形的性质和三角形内角和定理是解题的关键.5、C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:(80+80+90+90)=85;方差为S丁2[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.6、C【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再根据∠DAE=67.5°,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后根据勾股定理求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠DAE=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.7、A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x≠1,故选A.8、A【分析】根据平行的性质求得内错角相等,根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,即可得出BD的长.【详解】∵AB∥FC,

∴∠ADE=∠CFE,

∵E是DF的中点,

∴DE=EF,

在△ADE与△CFE中,,∴△ADE≌△CFE(ASA),

∴AD=CF=7cm,

∴BD=AB-AD=12-7=5(cm).

故选:A.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.9、B【分析】将杯子侧面展开,作A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图,将杯子侧面展开,作A关于EF的对称点A′,

连接A′B,则A′B即为最短距离,

在直角△A′DB中,由勾股定理得

A′B===20(cm).

故选B.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000077=7.7×10﹣6,故答案选C.二、填空题(每小题3分,共24分)11、【分析】根据题意表示出原来每天的用水量,现在每天的用水量,两者相减,计算得出结果.【详解】∵原来天用水吨,∴原来每天用水吨,现在多用4天,则现在天使用吨,∴现在每天用水吨,∴现在每天比原来少用水吨,故答案为.【点睛】本题考查分式的计算,根据题意列出表达式是关键.12、1【解析】分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.【详解】∵分式的值为0,∴,∴x=1.故答案是:1.【点睛】考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.13、【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=﹣5,b=1,∴=﹣+(﹣5)=﹣,故答案为:﹣.【点睛】考核知识点:轴对称与坐标.理解性质是关键.14、.【分析】根据题意画出图形,再根据面积的和差即可求出答案.【详解】如图所示,则AB,AC,BC,∴S△ABC=S矩形DEFC﹣S△ABE﹣S△ADC﹣S△BFC=20ab.故答案为:.【点睛】本题考查勾股定理的应用,解题的关键是熟练运用勾股定理,本题属于基础题型15、1.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【详解】解:根据题意得,5﹣x≥0且x﹣5≥0,解得x≤5且x≥5,∴x=5,y=3,∴x+y=5+3=1.故答案为:1.【点睛】本题考查了二次根式有意义的条件,掌握二次根式的被开方数大于等零时有意义是解题的关键.16、70°或40°或20°【分析】分三种情况:①当AC=AD时,②当CD′=AD′时,③当AC=AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B=50°,∠C=90°,∴∠BAC=90°-50°=40°,如图,有三种情况:

①当AC=AD时,∠ACD==70°;

②当CD′=AD′时,∠ACD′=∠BAC=40°;

③当AC=AD″时,∠ACD″=∠BAC=20°,

故答案为70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17、①②③【解析】解:在△AEF和△ABC中,∵AB=AE,∠B=∠E,BC=EF,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,故①②③正确,④错误;所以答案为:①②③.点睛:本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.18、1.【解析】首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.【详解】2x﹣a≤﹣1,x≤,∵解集是x≤1,∴=1,解得:a=1,故答案为1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.三、解答题(共66分)19、(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.20、(1)45度;(1)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(1)由等腰三角形的性质可求∠BAE=180°﹣1α,可得∠CAE=90°﹣1α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=10°,∴∠ABE=∠AED=10°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(1)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣1α,∴∠CAE=∠BAE﹣∠BAC=90°﹣1α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE1=AF1+EF1,∴(AF)1+(EF)1=1AE1,∴EH1+CH1=1AE1.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.21、(1)商品标价为80元,商品标价为100元.(2)商场打六折出售这两种商品.(3)有3种购买方案,分别是A商品5个,B商品12个;A商品10个,B商品8个;A商品15个,B商品4个.【分析】(1)可设商品标价为元,商品标价为元,根据图表给的数量关系列出二元一次方程组解答即可.(2)求出第三次商品如果按原价买的价钱,再用实际购买费用相比即可.(3)求出两种商品折扣价之后,根据表中数量关系列出二元一次方程,化简后讨论各种可能性即可.【详解】解:(1)设商品标价为元,商品标价为元,由题意得,解得.所以商品标价为80元,商品标价为100元.(2)由题意得,元,,所以商场是打六折出售这两种商品.(3)商品折扣价为48元,商品标价为60元由题意得,,化简得,,,由于与皆为正整数,可列表:151054812所以有3种购买方案.【点睛】本题考查了二元一次方程组解决问题,理解题意,找到数量关系是解答关键.22、证明过程见解析.【分析】由基本作图得到,,根据“SSS”可证明,然后根据全等三角形的性质得到.【详解】由题意得,,在和中,,∴,∴故.【点睛】本题考察了三角形全等的判定方法:SSS,根据同弧所在圆的半径相等得到两组对边相等,并且同弧所对弦相等得到另一种对边相等,熟练掌握不同三角形全等的判定条件是解决本题的关键.23、(1)(2)【分析】(1)利用代入法求解,把①代入②;(2)利用加减消元法①×3+②得出14x=-14,求出x,把x的值代入①求出y即可;【详解】(1)把①代入②得:4y-3y=2

解得:y=2;

把y=2代入①得:x=4,

则方程组的解是:(2)①×3+②得:14x=-14,

解得:x=-1,

把x=-1代入①得:-3+2y=3,

解得:y=3,

所以原方程组的解为【点睛】本题考查了一元一次方程的解法和二元一次方程组的解法,解方程组的基本思想是消元,方法有:代入法和加减法两种,要根据方程组的特点选择适当的方法.24、(1)见解析;(2)DE∥AC,理由见解析【分析】(1)根据角平分线的尺规作图可得;(2)先由AD=CD知∠A=∠DCA,继而得∠BDC=∠A+∠DCA=2∠A,再由DE平分∠BDC知∠BDC=2∠BDE,从而得∠BDE=∠A,从而得证.【详解】解:(1)如图所示,DE即为所求.(2)DE∥AC.理由如下:因为AD=CD,所以∠A=∠DCA,所以∠BDC=∠A+∠DCA=2∠A,因为DE平分∠BDC,所以∠BDC=2∠BDE,所以∠BDE=∠A,所以DE∥AC.【点睛】本题考查尺规作图、角平分线的性质和平行线的判定,解题的关键是掌握尺规作图、角平分线的性质和平行线的判定.25、(1)甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天;(2)甲队应得的报酬为7500元,乙队应得的报酬为12500元.【分析】(1)首先表示出两工程队完成需要的时间,进而利用总工作量为1得出等式求出答案;(2)根据(1)中所求,进而利用两队完成的工作量求出答案.【详解】(1)设甲队单独完成此项工程需要5x天,则乙队单独完成此项工程需要3x天,根据题意得:(1解得:x=8,经检验,x=8是原方程得解,∴5x=5×8=40(天),3x=3×8=24(天).答:甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天.(2)甲队应得到20000×1乙队应得到20000×1答:甲队应得的报酬为7500元,乙队应得的报酬为12500元.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论