![2024届江苏省靖江市刘国钧中学招生全国统一考试仿真卷(五)-高考数学试题仿真试题_第1页](http://file4.renrendoc.com/view10/M03/34/0C/wKhkGWWN3g-AEvR9AAH-EayHvgI445.jpg)
![2024届江苏省靖江市刘国钧中学招生全国统一考试仿真卷(五)-高考数学试题仿真试题_第2页](http://file4.renrendoc.com/view10/M03/34/0C/wKhkGWWN3g-AEvR9AAH-EayHvgI4452.jpg)
![2024届江苏省靖江市刘国钧中学招生全国统一考试仿真卷(五)-高考数学试题仿真试题_第3页](http://file4.renrendoc.com/view10/M03/34/0C/wKhkGWWN3g-AEvR9AAH-EayHvgI4453.jpg)
![2024届江苏省靖江市刘国钧中学招生全国统一考试仿真卷(五)-高考数学试题仿真试题_第4页](http://file4.renrendoc.com/view10/M03/34/0C/wKhkGWWN3g-AEvR9AAH-EayHvgI4454.jpg)
![2024届江苏省靖江市刘国钧中学招生全国统一考试仿真卷(五)-高考数学试题仿真试题_第5页](http://file4.renrendoc.com/view10/M03/34/0C/wKhkGWWN3g-AEvR9AAH-EayHvgI4455.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省靖江市刘国钧中学招生全国统一考试仿真卷(五)-高考数学试题仿真试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.2.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.4.己知,,,则()A. B. C. D.5.已知复数满足,则的共轭复数是()A. B. C. D.6.已知函数,若,则下列不等关系正确的是()A. B.C. D.7.已知等式成立,则()A.0 B.5 C.7 D.138.已知集合,,则()A. B.C.或 D.9.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.10.已知无穷等比数列的公比为2,且,则()A. B. C. D.11.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.612.已知是等差数列的前项和,,,则()A.85 B. C.35 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则_____.14.电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_________15.设是公差不为0的等差数列的前n项和,且,则______.16.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)若,求的单调区间和极值;(2)设,且有两个极值点,,若,求的最小值.18.(12分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.19.(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.20.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.21.(12分)已知函数(,),且对任意,都有.(Ⅰ)用含的表达式表示;(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.22.(10分)如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【题目详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【题目点拨】本道题考查了抛物线的基本性质,难度中等.2、A【解题分析】
求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【题目详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【题目点拨】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.3、C【解题分析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【题目详解】,.若存在极值,则,又.又.故选:C.【题目点拨】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.4、B【解题分析】
先将三个数通过指数,对数运算变形,再判断.【题目详解】因为,,所以,故选:B.【题目点拨】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.5、B【解题分析】
根据复数的除法运算法则和共轭复数的定义直接求解即可.【题目详解】由,得,所以.故选:B【题目点拨】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.6、B【解题分析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【题目详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【题目点拨】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.7、D【解题分析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【题目详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【题目点拨】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.8、D【解题分析】
首先求出集合,再根据补集的定义计算可得;【题目详解】解:∵,解得∴,∴.故选:D【题目点拨】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.9、B【解题分析】
变形为,由得,转化在中,利用三点共线可得.【题目详解】解:依题:,又三点共线,,解得.故选:.【题目点拨】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)10、A【解题分析】
依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【题目详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。【题目点拨】本题主要考查无穷等比数列求和公式的应用。11、B【解题分析】
根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【题目详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【题目点拨】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.12、B【解题分析】
将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,,,.故选:B【题目点拨】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对原方程两边求导,然后令求得表达式的值.【题目详解】对等式两边求导,得,令,则.【题目点拨】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.14、A或D【解题分析】
分别假设每一个人一半是对的,然后分别进行验证即可.【题目详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是.故第4个盒子里面放的电影票为或.故答案为:或【题目点拨】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题.15、18【解题分析】
将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【题目详解】因为,所以.故填:.【题目点拨】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.16、【解题分析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【题目详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【题目点拨】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;极小值,无极大值;(2)【解题分析】
(1)求出f(x)的导数,解不等式,即可得到函数的单调区间,进而得到函数的极值;(2)由题意可得,,求出的表达式,,求出h(t)的最小值即可.【题目详解】(1)将代入中,得到,求导,得到,结合,当得到:增区间为,当,得减区间为且在时有极小值,无极大值.(2)将解析式代入,得,求导得到,令,得到,,,,,,,,因为,所以设,令,则所以在单调递减,又因为所以,所以或又因为,所以所以,所以的最小值为.【题目点拨】本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数的极值的意义,考查转化思想与减元意识,是一道综合题.18、(1)单调递减区间为(0,1),单调递增区间为(1,+∞)(2)(3,2e]【解题分析】
(1)当a=2时,求出,求解,即可得出结论;(2)函数在上有两个零点等价于a=2x在上有两解,构造函数,,利用导数,可分析求得实数a的取值范围.【题目详解】(1)当a=2时,定义域为,则,令,解得x1,或x1(舍去),所以当时,单调递减;当时,单调递增;故函数的单调递减区间为,单调递增区间为,(2)设,函数g(x)在上有两个零点等价于在上有两解令,,则,令,,显然,在区间上单调递增,又,所以当时,有,即,当时,有,即,所以在区间上单调递减,在区间上单调递增,时,取得极小值,也是最小值,即,由方程在上有两解及,可得实数a的取值范围是.【题目点拨】本题考查了利用导数研究函数的单调性极值与最值、等价转化思想以及数形结合思想,考查逻辑推理、数学计算能力,属于中档题.19、;.【解题分析】
设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;由题意可知,随机变量的可能取值为,,,相应求出概率,求出期望,化简得,由题意可知,,即,求出的最小值.【题目详解】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,所以;由题意可知,随机变量的可能取值为,,,且,,,所以随机变量的数学期望,,化简得,由题意可知,,即,化简得,因为,解得,即的最小值为.【题目点拨】本题主要考查概率和期望的求法,属于常考题.20、(1)见解析;(2)【解题分析】
(1)由题可知,根据三角形的中位线的性质,得出,根据矩形的性质得出,所以,再利用线面平行的判定定理即可证出平面;(2)由于平面平面,根据面面垂直的性质,得出平面,从而得出到平面的距离为,结合棱锥的体积公式,即可求得结果.【题目详解】解:(1)∵,分别为,的中点,∴,∵四边形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中点,,连接,,,,则,由于为三棱柱,为四棱锥,∵平面平面,∴平面,由已知可求得,∴到平面的距离为,因为四边形是矩形,,,,设几何体的体积为,则,∴,即:.【题目点拨】本题考查线面平行的判定、面面垂直的性质和棱锥的体积公式,考查逻辑推理和计算能力.21、(1)(2)见解析(3)见解析【解题分析】试题分析:利用赋值法求出关系,求函数导数,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,再根据函数图象和极值的大小判断零点的个数.试题解析:(Ⅰ)根据题意:令,可得,所以,经验证,可得当时,对任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在两个极值点,,则须有有两个不相等的正数根,所以或解得或无解,所以的取值范围,可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物流运输项目融资担保合同汇编
- 2025年度绿色能源项目融资居间合作协议范本
- 幼儿园健康教育教学计划
- 林业行业会计个人工作计划
- 财务信息化建设方案计划
- 学习成果与展示活动计划
- 前台工作中的情绪管理技巧计划
- 幼儿思维训练活动的开展计划
- 开展针对老年人的图书服务计划
- 2025年立方氮化硼晶体合作协议书
- 安徽2024年安徽医科大学招聘管理岗和专业技术辅助岗(第二批)笔试历年参考题库解题思路附带答案详解
- 中考语文句子排序练习题(文本版)
- 外研版七年级下册重点语法总结
- 陕西建工集团股份有限公司2023环境、社会和公司治理(ESG)报告
- 国家科学技术奖励提名书
- 一年级下期开学第一课
- 2024年影视艺术概论复习考试题(附答案)
- 舞台灯光设计与光影艺术考核试卷
- 园林绿化一月份养护计划
- 2024年辅警招考时事政治考题及答案(100题)
- 小肠梗阻的护理
评论
0/150
提交评论