湖北省三校2024届高三1月调研(期末)测试数学试题_第1页
湖北省三校2024届高三1月调研(期末)测试数学试题_第2页
湖北省三校2024届高三1月调研(期末)测试数学试题_第3页
湖北省三校2024届高三1月调研(期末)测试数学试题_第4页
湖北省三校2024届高三1月调研(期末)测试数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省三校2024届高三1月调研(期末)测试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若则()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)2.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.3.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(

)A. B. C.或 D.或4.已知数列{an}满足a1=3,且aA.22n-1+1 B.22n-1-15.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或6.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.7.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为()A. B. C. D.8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-9.若直线的倾斜角为,则的值为()A. B. C. D.10.已知等差数列中,则()A.10 B.16 C.20 D.2411.已知集合,集合,若,则()A. B. C. D.12.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则____.14.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.15.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.16.曲线在点处的切线方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.18.(12分)已知三点在抛物线上.(Ⅰ)当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;(Ⅱ)当,且时,求面积的最小值.19.(12分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.21.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.22.(10分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【题目详解】因为,所以在上单调递增;在同一坐标系中作与图象,,可得,故.故选:C【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.2、D【解题分析】

作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【题目详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【题目点拨】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.3、D【解题分析】

由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【题目详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【题目点拨】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.4、D【解题分析】试题分析:因为an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考点:数列的通项公式.5、D【解题分析】

由正弦定理可求得,再由角A的范围可求得角A.【题目详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【题目点拨】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.6、D【解题分析】

如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【题目详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【题目点拨】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.7、A【解题分析】

将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【题目详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,∵四面体所有棱长都是4,∴正方体的棱长为,设球的半径为,则,解得,所以,故选:A.【题目点拨】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.8、C【解题分析】

直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【题目详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【题目点拨】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.9、B【解题分析】

根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【题目详解】由于直线的倾斜角为,所以,则故答案选B【题目点拨】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.10、C【解题分析】

根据等差数列性质得到,再计算得到答案.【题目详解】已知等差数列中,故答案选C【题目点拨】本题考查了等差数列的性质,是数列的常考题型.11、A【解题分析】

根据或,验证交集后求得的值.【题目详解】因为,所以或.当时,,不符合题意,当时,.故选A.【题目点拨】本小题主要考查集合的交集概念及运算,属于基础题.12、A【解题分析】

根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【题目详解】由题可知,,,则解得,由可得,答案选A【题目点拨】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由,得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果.【题目详解】因为,所以,所以.故答案为:.【题目点拨】本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查.14、【解题分析】

两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【题目详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时,为减函数,当时,为增函数,故函数有最小值,又由;比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【题目点拨】本题利用导数研究函数在某区间上最值求参数的问题,函数零点问题的拓展.由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.15、1【解题分析】

当时,得,或,依题意可得,可求得,继而可得答案.【题目详解】因为点的横坐标为1,即当时,,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,,所以,故,所以函数的关系式为.当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点.故答案为:1.【题目点拨】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题.16、【解题分析】

求导,得到和,利用点斜式即可求得结果.【题目详解】由于,,所以,由点斜式可得切线方程为.故答案为:.【题目点拨】本题考查利用导数的几何意义求切线方程,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;(2)通过对的导函数分析,确定有唯一零点,则就是的极大值点也是最大值点,计算的值并利用进行化简,从而确定.【题目详解】(1)由题意知,在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.【题目点拨】(1)求函数中字母的范围时,常用的方法有两种:参变分离法、分类讨论法;(2)当导函数不易求零点时,需要将导函数中某些部分拿出作单独分析,以便先确定导函数的单调性从而确定导函数的零点所在区间,再分析整个函数的单调性,最后确定出函数的最值.18、(Ⅰ);(Ⅱ)16.【解题分析】

(Ⅰ)设出直线的方程并代入抛物线方程,利用韦达定理以及斜率公式,变形可得;(Ⅱ)利用,,的斜率,求得的坐标,,再用基本不等式求得的最小值,从而可得三角形的面积的最小值.【题目详解】解:(Ⅰ)设直线的方程为.联立方程组,得,,故,.所以;(Ⅱ)不妨设的三个顶点中的两个顶点在轴右侧(包括轴),设,,,的斜率为,又,则,①因为,所以②由①②得,,(且)从而当且仅当时取“”号,从而,所以面积的最小值为.【题目点拨】本题考查了直线与抛物线的综合,属于中档题.19、(1)见解析;(2).【解题分析】

(1)利用中位线的性质得出,然后利用线面平行的判定定理可证明出平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,利用空间向量法可求得直线与平面所成角的正弦值.【题目详解】(1)因为、分别为、的中点,所以.又因为平面,平面,所以平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,则,,,,,,,.设平面的法向量为,则,即,令,则,,所以.设直线与平面所成角为,所以.因此,直线与平面所成角的正弦值为.【题目点拨】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成的角,考查推理能力与计算能力,属于中等题.20、(1)(2)【解题分析】

(1)首先利用诱导公式及两角和的余弦公式得到,再由同角三角三角的基本关系得到,即可求出角;(2)由(1)知,是正三角形,设,由余弦定理可得:,则,得到,再利用辅助角公式化简,最后由正弦函数的性质求得最大值;【题目详解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,设,由余弦定理得:,,,所以当时有最大值【题目点拨】本题考查同角三角函数的基本关系,三角恒等变换公式的应用,三角形面积公式的应用,以及正弦函数的性质,属于中档题.21、(1)答案见解析(2)【解题分析】

(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【题目详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论