版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省通化市“BEST合作体”2024届高三下-第二次联考数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.2.设,,,则的大小关系是()A. B. C. D.3.设,,是非零向量.若,则()A. B. C. D.4.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A. B. C. D.5.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.6.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.7.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.8.的展开式中的项的系数为()A.120 B.80 C.60 D.409.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.10.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.711.已知函数的一条切线为,则的最小值为()A. B. C. D.12.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则的最小值是______.14.已知,满足不等式组,则的取值范围为________.15.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.16.已知是等比数列,且,,则__________,的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面为直角梯形,,,,,在锐角中,E是边PD上一点,且.(1)求证:平面ACE;(2)当PA的长为何值时,AC与平面PCD所成的角为?18.(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值.19.(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.20.(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:21.(12分)已知函数,,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.22.(10分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由,两边平方后展开整理,即可求得,则的长可求.【题目详解】解:,,,,,,.,,故选:.【题目点拨】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.2、A【解题分析】
选取中间值和,利用对数函数,和指数函数的单调性即可求解.【题目详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【题目点拨】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.3、D【解题分析】试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.4、C【解题分析】
根据题目中的基底定义求解.【题目详解】因为,,,,,,所以能作为集合的基底,故选:C【题目点拨】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.5、C【解题分析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【题目详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【题目点拨】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.6、A【解题分析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【题目详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【题目点拨】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.7、A【解题分析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【题目详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【题目点拨】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.8、A【解题分析】
化简得到,再利用二项式定理展开得到答案.【题目详解】展开式中的项为.故选:【题目点拨】本题考查了二项式定理,意在考查学生的计算能力.9、A【解题分析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【题目详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【题目点拨】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.10、B【解题分析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.11、A【解题分析】
求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【题目详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【题目点拨】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.12、D【解题分析】
分别求出球和圆柱的体积,然后可得比值.【题目详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【题目点拨】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】
根据,利用基本不等式可求得函数最值.【题目详解】,,当且仅当且,即时,等号成立.时,取得最小值.故答案为:【题目点拨】本题考查基本不等式,构造基本不等式的形式是解题关键.14、【解题分析】
画出不等式组表示的平面区域如下图中阴影部分所示,易知在点处取得最小值,即,所以由图可知的取值范围为.15、【解题分析】
作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【题目点拨】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.16、5【解题分析】,即的最大值为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)当时,AC与平面PCD所成的角为.【解题分析】
(1)连接交于,由相似三角形可得,结合得出,故而平面;(2)过作,可证平面,根据计算,得出的大小,再计算的长.【题目详解】(1)证明:连接BD交AC于点O,连接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F为垂足,连接CF平面PAD,平面PAD.,有,,平面就是AC与平面PCD所成的角,,,,,,时,AC与平面PCD所成的角为.【题目点拨】本题考查了线面平行的判定,线面垂直的判定与线面角的计算,属于中档题.18、(1)(2)特征值为或.【解题分析】
(1)先设矩阵,根据,按照运算规律,即可求出矩阵.(2)令矩阵的特征多项式等于,即可求出矩阵的特征值.【题目详解】解:(1)设矩阵由题意,因为,所以,即所以,(2)矩阵的特征多项式,令,解得或,所以矩阵的特征值为1或.【题目点拨】本题主要考查矩阵的乘法和矩阵的特征值,考查学生的划归与转化能力和运算求解能力.19、(1)(2)【解题分析】
(1))当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【题目详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【题目点拨】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.20、(1)递减区间为(-1,0),递增区间为(2)见解析【解题分析】
(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【题目详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,∴当时,,单调递减,当时,,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,,因此要证当时,,只需证明,即令,则,在是单调递增,而,∴存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 托儿所服务的亲子关怀考核试卷
- 煤炭行业的全球化竞争与合作方式考核试卷
- 衡阳课件效果教学课件
- DB11T 934-2012 儿童福利机构婴幼儿早期发展干预技术规范
- DB11∕T 1812-2020 既有玻璃幕墙安全性检测与鉴定技术规程
- 孔雀妆课件教学课件
- 服装店铺新员工培训计划方案
- 走进丽江课件教学课件
- 淮阴工学院《建筑工程概预算》2022-2023学年第一学期期末试卷
- 淮阴工学院《机械设计基础》2022-2023学年第一学期期末试卷
- 内分泌科利用PDCA循环提高全院胰岛素存放的合格率品管圈QCC成果汇报
- 犹太律法613条具体条款
- 《HSK标准教程3》第10课
- 体育教育与中小学生身心健康的关系研究
- 商场电缆施工方案
- 2023中国职业教育行业发展趋势报告-多鲸教育研究院
- 《中国老年骨质疏松症诊疗指南(2023)》解读-
- “双减”背景下小学英语课后作业设计实践探究 论文
- 广东省佛山市顺德区部分学校2023-2024学年四年级上学期期中语文试卷
- 南方航空空乘招聘报名表
- 灭火器充装检修方案范本
评论
0/150
提交评论