河南省桐柏县2023-2024学年八上数学期末学业水平测试试题含解析_第1页
河南省桐柏县2023-2024学年八上数学期末学业水平测试试题含解析_第2页
河南省桐柏县2023-2024学年八上数学期末学业水平测试试题含解析_第3页
河南省桐柏县2023-2024学年八上数学期末学业水平测试试题含解析_第4页
河南省桐柏县2023-2024学年八上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省桐柏县2023-2024学年八上数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为()A.49 B. C.3 D.73.下列计算中正确的是()A. B. C. D.4.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A. B.C. D.5.下列图形中,是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个6.下列说法不正确的是()A.的平方根是 B.-9是81的一个平方根C. D.0.2的算术平方根是0.027.在,,,,中,无理数的个数是()A.个 B.个 C.个 D.个8.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A.14 B.10 C.14或10 D.以上都不对9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米10.在中,的外角等于,的度数是()A. B. C. D.11.下列说法正确的是()A.带根号的数都是无理数B.数轴上的每一个点都表示一个有理数C.一个正数只有一个平方根D.实数的绝对值都不小于零12.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,则AB的长是()A.4 B.6 C.8 D.10二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点都在轴上,点都在第一象限的角平分线上,都是等腰直角三角形,且,则点的坐标为_________________.14.已知函数y1=x+2,y2=4x-4,y3=-x+1,若无论x取何值,y总取y1,y2,y3中的最大值,则y的最小值是__________.15.已知等腰三角形一腰上的中线将这个等腰三角形的周长分为9和15两部分,则这个等腰三角形的腰长为__________.16.已知:如图,,点为内部一点,点关于的对称点的连线交于两点,连接,若,则的周长=__________.17.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,那么需要A类、B类和C类卡片的张数分别为______.18.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD②∠BFG=60°;③EF=CG;④AD⊥CD⑤FG∥AC其中,正确的结论有__________________.(填序号)三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象为直线1.(1)观察与探究已知点与,点与分别关于直线对称,其位置和坐标如图所示.请在图中标出关于线的对称点的位置,并写出的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点关于直线的对称点的坐标为______.(3)运用与拓展已知两点、,试在直线上作出点,使点到、点的距离之和最小,并求出相应的最小值.20.(8分)一般地,若(且),则n叫做以a为底b的对数,记为,即.譬如:,则4叫做以3为底81的对数,记为(即=4).(1)计算以下各对数的值:,,.(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的等量关系式;(3)由(2)猜想一般性的结论:.(且),并根据幂的运算法则:以及对数的含义证明你的猜想.21.(8分)如图,已知网格上最小的正方形的边长为(长度单位),点在格点上.(1)直接在平面直角坐标系中作出关于轴对称的图形(点对应点,点对应点);(2)的面积为(面积单位)(直接填空);(3)点到直线的距离为(长度单位)(直接填空);22.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.23.(10分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.(1)求证:四边形是平行四边形.(2)当时,若,,求的长.24.(10分)如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.(1)求证:△ABC≌△DBE.(2)若∠CBE=50°,求∠BED的度数.25.(12分)计算及解方程组:(1);(2);(3)解方程组:.26.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.故选:C.【点睛】此题考查轴对称图形的概念,解题关键在于寻找对称轴,图形两部分折叠后可重合.2、D【分析】根据勾股定理可知:以斜边为边长的正方形的面积等于以两条直角边为边长的正方形的面积和,据此求解即可.【详解】解:∵以直角边为边长的两个正方形的面积为35和14,∴AB1=AC1+BC1=35+14=49,∴AB=7(负值舍去),故选:D.【点睛】本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.3、D【分析】运用幂的运算法则即可进行判断.【详解】A中和不是同底数幂,也不是同类项,不能合并,A错;同底数幂相除,底数不变,指数相减,B错;同底数幂相乘,底数不变,指数相加,C错;幂的乘方,底数不变,指数相乘,D对故本题正确选项为D.【点睛】本题考查了幂的运算法则,掌握相关知识点是解决本类题的关键.4、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.5、C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:第一个不是轴对称图形;第二个是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;故是轴对称图形的个数是3个.故选C.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6、D【分析】依据平方根、算术平方根的性质进行判断即可.【详解】A、的平方根是,故A正确,与要求不符;B、-9是81的一个平方根,故B正确,与要求不符;C、,故C正确,与要求相符;D、0.2的算术平方根不是0.02,故D错误,与要求相符.故选D.【点睛】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.7、B【分析】根据无理数的定义判断即可.【详解】解:,是无理数,=,可以化成分数,不是无理数.故选B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.8、A【分析】分腰长为2和腰长为6两种情况,结合三角形三边关系进行讨论即可求得答案.【详解】①若2为腰,2+2<6不能构成三角形;②若6为腰,满足构成三角形的条件,则周长为6+6+2=1.故选A.9、C【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.10、D【分析】根据三角形的一个外角等于不相邻的两个内角之和可得结果.【详解】∵中,的外角等于∴∠A+∠B=110°,∴∠A=110°-∠B=75°,故选D.【点睛】本题考查三角形的外角性质,熟记性质是解题的关键.11、D【分析】根据无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质逐一判断即可【详解】A.带根号的数不一定是无理数,故此选项错误;B.数轴上的每一个点都表示一个实数,故此选项错误;C.一个正数有2个平方根,故此选项错误;D.实数的绝对值都不小于零,正确.故选:D.【点睛】本题考查了无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质,熟练掌握相关的知识是解题的关键12、C【解析】试题解析:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选C.二、填空题(每题4分,共24分)13、【分析】因点都在第一象限的角平分线上,是等腰直角三角形,,,以此类推得出,,从而推出一般形式,即可求解.【详解】解:∵都在第一象限的角平分线上∴是等腰直角三角形∴同理可得:,,∴当时,代入得故答案为:.【点睛】本题主要考查的是找规律问题,先写出前面几个值,在根据这几个值找出其中的规律扩展到一般情况是解题的关键.14、【分析】利用两直线相交的问题,分别求出三条直线两两相交的交点,然后观察函数图象,利用一次函数的性质易得:当x≤-时,y3最大;当-≤x≤2时,y1最大;当x≥2时,y2最大,于是可得满足条件的y的最小值.【详解】解:y1=x+2,y2=4x-4,y3=-x+1,如下图所示:令y1=y2,得x+2=4x-4解得:x=2,代入解得y=4∴直线y1=x+2与直线y2=4x-4的交点坐标为(2,4),令y2=y3,得4x-4=-x+1解得:x=代入解得:y=∴直线y2=4x-4与直线y3=-x+1的交点坐标为(),令y1=y3,得x+2=-x+1解得:x=代入解得:y=∴直线y1=x+2与直线y3=-x+1的交点坐标为(),由图可知:①当x≤-时,y3最大,∴此时y=y3,而此时y3的最小值为,即此时y的最小值为;②当-≤x≤2时,y1最大∴此时y=y1,而此时y1的最小值为,即此时y的最小值为;③当x≥2时,y2最大,∴此时y=y2,而此时y2的最小值为4,即此时y的最小值为4综上所述:y的最小值为.

故答案为:.【点睛】本题考查了一次函数的交点问题和利用一次函数的图象解决问题,掌握一次函数的交点求法和学会观察一次函数的图象是解决此题的关键.15、10【分析】设腰长为x,底边长为y,根据等腰三角形一腰上的中线将这个等腰三角形的周长分为9和15两部分,列方程解得即可.【详解】解:设腰长为xcm,底为ycm,根据题意可知:x-y=15-9=6(cm)或y-x=15-9=6(cm),

∵周长为24,即x+x+y=24,当腰长大于底边时,即x-y=6,可解得:x=10,y=4,此时三角形的三边为10,10,4,满足三角形的三边关系;当腰长小于底边时,即y-x=6,可解得:x=6,y=12,此时三角形的三边为6,6,12,不满足三角形的三边关系;综上可知,三角形的腰长为10cm,故答案为:10.【点睛】本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等是解题的关键.16、【分析】连接OP1,OP2,利用对称的性质得出OP=OP1=OP2=2,再证明△OP1P2是等腰直角三角形,则△PMN的周长转化成P1P2的长即可.【详解】解:如图,连接OP1,OP2,∵OP=2,根据轴对称的性质可得:OP=OP1=OP2=2,PN=P2N,PM=P1M,∠BOP=∠BOP2,∠AOP=∠AOP1,∵∠AOB=45°,∴∠P1OP2=90°,即△OP1P2是等腰直角三角形,∵PN=P2N,PM=P1M,∴△PMN的周长=P1M+P2N+MN=P1P2,∵P1P2=OP1=.故答案为:.【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.17、2,2,1【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【详解】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+1ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片1张.故答案为2,2,1.【点睛】此题考查了多项式乘多项式,弄清题意是解本题的关键.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.18、①②③⑤【解析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.三、解答题(共78分)19、(1)(3,-2);(2)(n,m);(3)图见解析,点到、点的距离之和最小值为【分析】(1)根据题意和图形可以写出的坐标;(2)根据图形可以直接写出点P关于直线l的对称点的坐标;(3)作点E关于直线l的对称点,连接F,根据最短路径问题解答.【详解】(1)如图,的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点关于直线的对称点的坐标为(n,m),故答案为(n,m);(3)点E关于直线l的对称点为(-3,2),连接F角直线l于一点即为点Q,此时点到、点的距离之和最小,即为线段F,∵F,∴点到、点的距离之和最小值为.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.20、(1)2,4,6;(2)+=;(3)猜想:,证明见解析.【分析】(1)根据材料中给出的运算,数值就是乘方运算的指数;(2)由(1)可以得出;(3)根据(2)可以写出,根据材料中的定义证明即可.【详解】(1),(2)(3)猜想:证明:设,,则,,故可得,,即.【点睛】本题考查对阅读材料的理解,类似于定义新运算,需要根据已知的材料寻找规律.21、(1)(图略);(2);(3).【解析】(1)分别作出点A和点C关于y轴的对称点,再与点B首尾顺次连接即可得;(2)利用割补法求解可得;(3)根据•A1C1•h=S△ABC且A1C1=1求得h的值即可得.【详解】(1)如图所示,△A1BC1即为所求.(2)△ABC的面积为4×4-×2×4-×1×2-×4×3=1,故答案为1.(3)∵A1C1==1,∴•A1C1•h=S△ABC,即×1×h=1,解得h=2,∴点B到直线A1C1的距离为2,故答案为2.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应位置.22、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时,W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时,W随m的增大而减小.【解析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【详解】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.23、(1)详见解析;(2)【分析】(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;

(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.【详解】(1)证明:∵点D,E分别是边AB,AC的中点,

∴DE∥BC.

∵CF∥AB,

∴四边形BCFD是平行四边形;

(2)解:∵AB=BC,E为AC的中点,

∴BE⊥AC.

∴∵AB=2DB=4,BE=3,【点睛】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论