河北省邢台市第八中学2024届八上数学期末复习检测模拟试题含解析_第1页
河北省邢台市第八中学2024届八上数学期末复习检测模拟试题含解析_第2页
河北省邢台市第八中学2024届八上数学期末复习检测模拟试题含解析_第3页
河北省邢台市第八中学2024届八上数学期末复习检测模拟试题含解析_第4页
河北省邢台市第八中学2024届八上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台市第八中学2024届八上数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若(b≠0),则=()A.0 B. C.0或 D.1或22.计算的结果是()A. B.5 C. D.-53.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分 B.8分 C.9分 D.10分4.把多项式因式分解,正确的是()A. B. C. D.5.如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A.SAS B.SSS C.ASA D.HL6.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为()A.4.5 B.5 C.5.5 D.67.下列分式中,是最简分式的是()A. B. C. D.8.平顶山市教体局要从甲、乙、丙三位教师中,选出一名代表,参加“学习强国”教育知识竞赛.经过5次比赛,每人平均成绩均为95分,方差如表:选手甲乙丙方差0.0180.0170.015则这5次比赛成绩比较稳定的是()A.甲 B.乙 C.丙 D.无法确定9.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是()A.众数和平均数 B.平均数和中位数C.众数和方差 D.众数和中位数10.某学校计划挖一条长为米的供热管道,开工后每天比原计划多挖米,结果提前天完成.若设原计划每天挖米,那么下面所列方程正确的是()A. B.C. D.11.要使分式有意义,x的取值应满足()A.x≠1 B.x≠﹣2 C.x≠1或x≠﹣2 D.x≠1且x≠﹣212.25的平方根是()A.±5 B.﹣5 C.5 D.25二、填空题(每题4分,共24分)13.当________时,分式无意义.14.如图,已知△ABC是等边三角形,分别在AC、BC上取点E、F,且AE=CF,BE、AF交于点D,则∠BDF=______.15.在平面直角坐标系中,,直线与轴交于点,与轴交于点为直线上的一个动点,过作轴,交直线于点,若,则点的横坐标为__________.16.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=50°,则∠BDA=________.17.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为________.18.已知一个等腰三角形的顶角30°,则它的一个底角等于_____________.三、解答题(共78分)19.(8分)计算:(x+3)(x﹣4)﹣x(x+2)﹣520.(8分)如图①是一个长为,宽为的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若,.求图②中阴影部分面积;(2)观察图②,写出,,三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若,,求的值.21.(8分)小李在某商场购买两种商品若干次(每次商品都买),其中前两次均按标价购买,第三次购买时,商品同时打折.三次购买商品的数量和费用如下表所示:购买A商品的数量/个购买B商品的数量/个购买总费用/元第一次第二次第三次(1)求商品的标价各是多少元?(2)若小李第三次购买时商品的折扣相同,则商场是打几折出售这两种商品的?(3)在(2)的条件下,若小李第四次购买商品共花去了元,则小李的购买方案可能有哪几种?22.(10分)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.图1图2图3(1)求证:DE=BO;(2)如图2,当点D恰好落在BC上时.①求OC的长及点E的坐标;②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.23.(10分)某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为、、、四个等级.其中相应等级的得分依次记为10分、9分、1分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)方差一班1.7699二班1.76110请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.24.(10分)如图,已知△ABC.(1)求作点P,使点P到B、C两点的距离相等,且点P到∠BAC两边的距离也相等(尺规作图,保留作图痕迹,不写作法).(2)在(1)中,连接PB、PC,若∠BAC=40°,求∠BPC的度数.25.(12分)如图,在平面直角坐标系中,(1)作出关于轴对称的,并写出三个顶点的坐标;(2)请计算的面积;26.某天,一蔬菜经营户用1200元钱按批发价从蔬菜批发市场买了西红柿和豆角共400kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:品名西红柿豆角批发价(单位:元/kg)2.43.2零售价(单位:元/kg)3.85.2(1)该经营户所批发的西红柿和豆角的质量分别为多少kg?(2)如果西红柿和豆角全部以零售价售出,他当天卖出这些西红柿和豆角赚了多少钱?

参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵,∴a(a-b)=0,∴a=0,b=a.当a=0时,原式=0;当b=a时,原式=故选C2、B【解析】根据二次根式的性质进行化简,即可得到答案.【详解】解:,故选:B.【点睛】本题考查了二次根式的性质,解题的关键是熟练掌握二次根式的性质进行计算.3、B【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分==8,故选B.【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.4、D【分析】根据题意首先提取公因式a,进而利用十字相乘法分解因式得出即可.【详解】解:.故选:D.【点睛】本题主要考查提取公因式法以及十字相乘法分解因式,熟练并正确利用十字相乘法分解因式是解题的关键.5、C【分析】根据现有的边和角利用全等三角形的判定方法即可得到答案.【详解】根据题意可知,都是已知的,所以利用ASA可以得到△ABC的全等三角形,从而就可画出跟原来一样的图形.故选:C.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.6、C【解析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=AB=×11=1.1,∴DF=1.1.故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.7、D【分析】根据最简分式的定义:一个分式的分子与分母没有公因式时叫最简分式,逐一判断即可.【详解】A.,不是最简分式,故本选项不符合题意;B.,不是最简分式,故本选项不符合题意;C.,不是最简分式,故本选项不符合题意;D.是最简分式,故本选项符合题意.故选D.【点睛】此题考查的是最简分式的判断,掌握最简分式的定义和公因式的定义是解决此题的关键.8、C【分析】根据方差的意义求解即可.【详解】解:∵这3位教师的平均成绩相等,而s丙2<s乙2<s甲2,∴这3人中丙的成绩最稳定,故选:C.【点睛】本题主要考查了方差的含义及应用,方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9、D【分析】根据众数和中位数的概念可得出结论.【详解】一组数据中出现次数最多的数值是众数;将数据从小到大排列,当项数为奇数时中间的数为中位数,当项数为偶数时中间两个数的平均数为中位数;由题可知,小明所说的是多数人的分数,是众数,小英所说的为排在中间人的分数,是中位数.故选为D.【点睛】本题考查众数和中位数的定义,熟记定义是解题的关键.10、A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:;实际所有时间:.提前10天完成,即.故选A.【点睛】本题考查分式方程的应用,关键在于理解题意找出等量关系.11、D【分析】根据分式的分母不为0来列出不等式,解不等式即可得到答案.【详解】解:由题意得,(x+2)(x﹣1)≠0,解得,x≠1且x≠﹣2,故选:D.【点睛】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.12、A【分析】如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.【详解】∵(±1)2=21∴21的平方根±1.故选A.二、填空题(每题4分,共24分)13、=1【解析】分式的分母等于0时,分式无意义.【详解】解:当即时,分式无意义.故答案为:【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.14、60°.【解析】试题分析:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,AB=AC,又∵AE=CF,∴△ABE≌△ACF(SAS),∴∠ABE=∠CAF,∴∠BDF=∠BAD+∠ABE=∠BAD+∠CAF=∠BAC=60°.考点:1.等边三角形的性质;2.全等三角形的性质和判定;3.三角形的外角的性质.15、2或【分析】先直线AB的解析式,然后设出点P和点Q的坐标,根据列方程求解即可.【详解】设直线AB的解析式为y=kx+b,把A(3,0),B(0,3)代入得,解得,∴y=-x+3,把x=0代入,得,∴D(0,1),设P(x,2x+1),Q(x,-x+3)∵,∴,解得x=2或x=,∴点的横坐标为2或.故答案为:2或.【点睛】本题考查了待定系数法求一次函数解析式,坐标图形的性质,以及两点间的距离,根据两点间的距离列出方程是解答本题的关键.16、25º【分析】由平行四边形的性质和折叠的性质可得AD∥BC,∠BDA=∠BDG,即可求解.【详解】∵将平行四边形ABCD沿对角线BD折叠,∴AD∥BC,∠BDA=∠BDG,∴∠1=∠ADG=50°,且∠ADG=∠BDA+∠BDG,∴∠BDA=25°,故答案为:25°.【点睛】本题考查了翻折变换,折叠的性质,平行四边形的性质,灵活运用折叠的性质是本题的关键.17、50【分析】易证△AEO≌△BAH,△BCH≌△CDF即可求得AO=BH,AH=EO,CH=DF,BH=CF,即可求得梯形DEOF的面积和△AEO,△ABH,△CGH,△CDF的面积,即可解题.【详解】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO,∵在△AEO和△BAH中,∴△AEO≌△BAH(AAS),同理△BCH≌△CDF(AAS),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF的面积=(EF+DH)•FH=80,S△AEO=S△ABH=AF•AE=9,S△BCH=S△CDF=CH•DH=6,∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故选:B.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEO≌△BAH,△BCH≌△CDF是解题的关键.18、75°【分析】已知明确给出等腰三角形的顶角是30°,根据等腰三角形的性质及三角形的内角和定理易求得底角的度数.【详解】解:∵等腰三角形的顶角是30°,

∴这个等腰三角形的一个底角=(180°-30°)=75°.

故答案为:75°.【点睛】此题考查了等腰三角形的性质及三角形内角和定理,此题很简单,解答此题的关键是熟知三角形内角和定理及等腰三角形的性质.三、解答题(共78分)19、﹣3x﹣1.【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【详解】解:原式==.【点睛】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则.20、(1);(2)或,过程见解析;(3)【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解;(2)根据完全平方公式的变形即可得到关系式;(3)根据,故求出,代入(2)中的公式即可求解.【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴;(2)结论:或∵,∴∴或;(3)∵,∴∴由(2)可知∴∵,∴.【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.21、(1)商品标价为80元,商品标价为100元.(2)商场打六折出售这两种商品.(3)有3种购买方案,分别是A商品5个,B商品12个;A商品10个,B商品8个;A商品15个,B商品4个.【分析】(1)可设商品标价为元,商品标价为元,根据图表给的数量关系列出二元一次方程组解答即可.(2)求出第三次商品如果按原价买的价钱,再用实际购买费用相比即可.(3)求出两种商品折扣价之后,根据表中数量关系列出二元一次方程,化简后讨论各种可能性即可.【详解】解:(1)设商品标价为元,商品标价为元,由题意得,解得.所以商品标价为80元,商品标价为100元.(2)由题意得,元,,所以商场是打六折出售这两种商品.(3)商品折扣价为48元,商品标价为60元由题意得,,化简得,,,由于与皆为正整数,可列表:151054812所以有3种购买方案.【点睛】本题考查了二元一次方程组解决问题,理解题意,找到数量关系是解答关键.22、(1)证明见解析;(2)①,;②存在;;③不会变化,MH+MG=1.【分析】(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=10°,求得∠OCB=∠DCE,根据全等三角形的性质即可得到结论;(2)①由点B(0,1),得到OB=1,根据全等三角形的性质得到∠CDE=∠BOC=90°,根据等边三角形的性质得到∠DEC=30°,求得CE=4,过E作EF⊥x轴于F,角三角形即可得到结论;②存在,如图d,当CE=CP=4时,当CE=PE,根据等腰三角形的性质即可得到结论;③不会变化,如图c,连接EM,根据三角形的面积公式即可得到结论.【详解】解:(1)证明:∵△ODC和△EBC都是等边三角形,∴OC=DC,BC=CE,∠OCD=∠BCE=10°.∴∠BCE+∠BCD=∠OCD+∠BCD,即∠ECD=∠BCO.∴△DEC≌△OBC(SAS).∴DE=BO.(2)①∵△ODC是等边三角形,∴∠OCB=10°.∵∠BOC=90°,∴∠OBC=30°.设OC=x,则BC=2x,∴x2+12=(2x)2.解得x=2.∴OC=2,BC=4.∵△EBC是等边三角形,∴BE=BC=4.又∵∠OBE=∠OBC+∠CBE=90°,∴E(4,1).②若点P在C点左侧,则CP=4,OP=4-2=2,点P的坐标为(-2,0);若点P在C点右侧,则OP=2+4=1,点P的坐标为(1,0).③不会变化,MH+MG=1【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定,三角形面积的计算,熟练掌握等边三角形的性质是解题的关键.23、答案不唯一.【分析】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.【详解】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给分.如:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.再如:选择二班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,二班的众数高于一班,因此可以选择二班参加校级比赛.【点睛】此题主要考查结合统计图进行数据分析,熟练理解相关概念是解题关键.24、(1)答案见解析;(2)∠BPC的度数为140°.【分析】(1)根据线段垂直平分线的性质和角平分线的性质即可作点P,使点P到B、C两点的距离相等,且点P到∠BAC两边的距离也相等;

(2)在(1)中,连接PB、PC,根据∠BAC=40°,即可求∠BPC的度数.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论