河北省涿州市实验中学2023年八上数学期末质量跟踪监视试题含解析_第1页
河北省涿州市实验中学2023年八上数学期末质量跟踪监视试题含解析_第2页
河北省涿州市实验中学2023年八上数学期末质量跟踪监视试题含解析_第3页
河北省涿州市实验中学2023年八上数学期末质量跟踪监视试题含解析_第4页
河北省涿州市实验中学2023年八上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省涿州市实验中学2023年八上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确2.已知等边三角形ABC.如图,(1)分别以点A,B为圆心,大于的AB长为半径作弧,两弧相交于M,N两点;(2)作直线MN交AB于点D;(2)分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于H,L两点;(3)作直线HL交AC于点E;(4)直线MN与直线HL相交于点O;(5)连接OA,OB,OC.根据以上作图过程及所作图形,下列结论:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120°,正确的是()A.①②③④ B.①③④ C.①②③ D.③④3.如图,在中,的垂直平分线分别交,于点,.若的周长为20,,则的周长为()A.6 B.8 C.12 D.204.若,,,,则它们的大小关系是()A. B. C. D.5.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36° B.54° C.72°或36° D.54°或126°6.如下图,将绕点顺时针方向旋转得,若,则等于()A. B. C. D.7.如图,在中,,垂足为,延长至,取,若的周长为12,则的周长是()A. B. C. D.8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对 B.3对 C.4对 D.5对9.若二次根式有意义,且关于的分式方程有正数解,则符合条件的整数的和是()A.-7 B.-6 C.-5 D.-410.下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.12.已知点与点关于直线对称,那么等于______.13.若一个三角形两边长分别是和,则第三边的长可能是________.(写出一个符合条件的即可)14.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则AB=______________.15.若将三个数、、表示在数轴上,则其中被墨迹覆盖的数是_______.16.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD为∠CAB的角平分线,若CD=3,则DB=____.17.如图所示,等边的顶点在轴的负半轴上,点的坐标为,则点坐标为_______;点是位于轴上点左边的一个动点,以为边在第三象限内作等边,若点.小明所在的数学兴趣合作学习小组借助于现代互联网信息技术,课余时间经过探究发现无论点在点左边轴负半轴任何位置,,之间都存在着一个固定的一次函数关系,请你写出这个关系式是_____.18.当x______时,分式有意义.三、解答题(共66分)19.(10分)先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.20.(6分)计算:3a3b·(-1ab)+(-3a1b)1.21.(6分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…(1)第④个等式为;(2)根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.22.(8分)计算:;23.(8分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?24.(8分)寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?25.(10分)如图,以正方形的中心O为顶点作一个直角,直角的两边分别交正方形的两边BC、DC于E、F点,问:(1)△BOE与△COF有什么关系?证明你的结论(提示:正方形的对角线把正方形分成全等的四个等腰直角三角形,即正方形的对角线垂直相等且相互平分);(2)若正方形的边长为2,四边形EOFC的面积为多少?26.(10分)如图,ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、B【分析】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB.【详解】如图,过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选B.【点睛】本题考查角平分线的判定定理,角的内部,到角两边的距离相等的点在这个角的平分线上;熟练掌握定理是解题关键.2、B【分析】根据等边三角形的性质,三角形的外心,三角形的内心的性质一一判断即可.【详解】解:由作图可知,点O是△ABC的外心,∵△ABC是等边三角形,∴点O是△ABC的外心也是内心,∴OB=2OE,OA=OB=OC,∵∠BAC=60°,∠ADO=∠AEO=90°,∴∠DOE=180°﹣60°=120°,故①③④正确,故选:B.【点睛】本题考查作图−复杂作图,线段的垂直平分线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、C【分析】根据线段垂直平分线的性质得出CD=BD,BC=2BE,得出AC+AB=△ABC的周长-BC,再求出△ABD的周长=AC+AB即可.【详解】解:∵BE=4,DE是线段BC的垂直平分线,

∴BC=2BE=8,BD=CD,

∵△ABC的周长为20,

∴AB+AC=16-BC=20-8=12,

∴△ABD的周长=AD+BD+AB=AD+CD+AB=AC+AB=12,

故选:C.【点睛】本题考查了线段垂直平分线的性质,能根据线段垂直平分线的性质得出BD=CD是解此题的关键.4、A【分析】先按法则把a,c,b,d计算结果,比较这些数的大小,再按从小到大的顺序,把a,c,b,d排序即可.【详解】=-0.04,,,=1,-4<-0.04<1<4,b<a<d<c.故选择:A.【点睛】本题考查乘方的运算,掌握乘方的性质,能根据运算的结果比较大小,并按要求排序是解决问题的关键.5、D【解析】根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【详解】①如图1,等腰三角形为锐角三角形,

∵BD⊥AC,∠ABD=36°,

∴∠A=54°,

即顶角的度数为54°.

②如图2,等腰三角形为钝角三角形,

∵BD⊥AC,∠DBA=36°,

∴∠BAD=54°,

∴∠BAC=126°.

故选D.【点睛】本题考查了直角三角形的性质、等腰三角形的性质,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.6、C【分析】根据旋转的性质,得∠ACA′=43°,=∠A′,结合垂直的定义和三角形内角和定理,即可求解.【详解】∵将绕点顺时针方向旋转得,点A对应点A′,∴∠ACA′=43°,=∠A′,∵,∴∠A′=180°-90°-43°=47°,∴=∠A′=47°.故选C.【点睛】本题主要考查旋转的性质和三角形内角和定理,掌握旋转的性质以及三角形内角和等于180°,是解题的关键.7、D【解析】根据等腰三角形的性质进行求解,得到各边长即可得出答案.【详解】∵中,∴是等边三角形∵∴,,,,∵∴∴∵的周长为12∴,,∴的周长是故答案为:D.【点睛】本题考查了三角形的周长问题,通过等腰三角形的性质求出各边长是解题的关键.8、D【解析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【详解】∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.【点睛】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.9、A【分析】根据二次根式有意义得出m的范围,根据分式方程有正数解得出x的范围,继而可得整数m的值.【详解】解:解分式方程,,,∵分式方程有正数解,∴∴,∵有意义,∴,∴,∴符合条件的m的值有:-4,-3,-2,-1,0,1,2,和为-7.故选A.【点睛】本题主要考查分式方程的解和二次根式有意义的条件,熟练掌握解分式方程和二次根式的性质,并根据题意得到关于m的范围是解题的关键.10、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.二、填空题(每小题3分,共24分)11、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.12、1【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x对称,则y相等,所以,.【详解】点与点关于直线对称∴,解得,∴故答案为1.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.13、1(1<x<3范围内的数均符合条件)【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,可求第三边长的范围.即可得出答案.【详解】设第三边长为x,则由三角形三边关系定理得出:1-1<x<1+1解得:1<x<3故答案可以为1<x<3范围内的数,比如1.【点睛】本题主要考查三角形三边关系:在三角形中任意两边之和大于第三边,任意两边之差小于第三边,掌握这一关系是解题的关键.14、【分析】由已知可得∠BAC=60°,AD为∠BAC的平分线,过点D作DE⊥AB于E,则∠BAD=∠CAD=30°,DE=CD=3,易证△ADB是等腰三角形,且BD=2DE=6,利用等腰三角形的性质及勾股定理即可求得AB的长.【详解】∵在△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°,由题意知AD是∠BAC的平分线,如图,过点D作DE⊥AB于E,∴∠BAD=∠CAD=30°,DE=CD=3,∴∠BAD=∠B=30°,∴△ADB是等腰三角形,且BD=2DE=6,∴BE=AE=,∴AB=2BE=,故答案为:.【点睛】本题考查了角平分线的性质、含30°角的直角三角形性质、等腰三角形的判定与性质,解答的关键是熟练掌握画角平分线的过程及其性质,会利用含30°角的直角三角形的性质解决问题.15、【分析】首先利用估算的方法分别得到、、前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【详解】解:∵-2<<-1,2<<3,3<<4,且墨迹覆盖的范围是1-3,∴能被墨迹覆盖的数是.故答案为:.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度不大.16、1【分析】先根据三角形的内角和定理,求出∠BAC的度数=180°﹣90°﹣30°=10°,然后利用角平分线的性质,求出∠CAD的度数∠BAC=30°.在Rt△ACD中,根据30°角所对的直角边等于斜边的一半,即可求出AD的长,进而得出BD.【详解】在Rt△ABC中∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=10°.∵AD是角平分线,∴∠BAD=∠CAD∠BAC=30°.在Rt△ACD中,∵∠CAD=30°,CD=3,∴AD=1.∵∠B=∠BAD=30°,∴BD=AD=1.故答案为1.【点睛】本题考查了含30°角的直角三角形,熟记含30°角的直角三角形的性质是解题的关键.17、【分析】过点A作x轴的垂线,垂足为E,根据等边三角形的性质得到OE和AE,再根据三线合一得到OB即可;再连接BD,过点D作x轴的垂线,垂足为F,证明△OAC≌△BAD,得到∠CAD=∠CBD=60°,利用30°所对的直角边是斜边的一半以及点D的坐标得到BF和DF的关系,从而可得关于m和n的关系式.【详解】解:如图,过点A作x轴的垂线,垂足为E,∵△ABO为等边三角形,A,∴OE=1,AE=,∴BE=1,∴OB=2,即B(-2,0);连接BD,过点D作x轴的垂线,垂足为F,∵∠OAB=∠CAD,∴∠OAC=∠BAD,∵OA=AB,AC=AD,∴△OAC≌△BAD(SAS),∴∠OCA=∠ADB,∵∠AGD=∠BGC,∴∠CAD=∠CBD=60°,∴在△BFD中,∠BDF=30°,∵D(m,n),∴DF=-m,DF=-n,∵B(-2,0),∴BF=-m-2,∵DF=BF,∴-n=(-m-2),整理得:.故答案为:,.【点睛】本题考查了等边三角形的性质,含30°的直角三角形的性质,全等三角形的判定和性质,一次函数,解题的关键是添加辅助线构造全等三角形,有一定难度.18、x≠-1【分析】根据分式有意义的条件是:分母不等于0,即可求解.【详解】解:根据题意得:x+1≠0,

解得:x≠-1.

故答案是:x≠-1.【点睛】本题主要考查了分式有意义的条件,是一个基础题.三、解答题(共66分)19、化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2x+1)-(4x2-9)=4x2-8x+4-4x2+9=-8x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.20、【分析】原式利用单项式乘以单项式,以及幂的乘方与积的乘方运算法则计算即可求出值.【详解】原式==【点睛】此题考查整式的混合运算,熟练掌握运算法则是解题的关键.21、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.22、−【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】=−3−1+3=−.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23、(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120万元、180万元;(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【解析】(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x、y万元,根据建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元,甲镇建设了2个A类村庄和5个B类村庄共投入资金1140万元,列方程组求解;

(2)根据(1)求出的值代入求解.【详解】解:(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x万元、y万元.由题意,得解得答:建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120、180万元.(2)3×120+6×180=1440(万元).答:乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,找出等量关系,列方程组求解.24、购买一个足球50元,一个篮球80元【分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论