版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市越秀区育才实验学校2023-2024学年八上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,边长为4的等边在平面直角坐标系中的位置如图所示,点在轴上,点,在轴上,则点的坐标为()A. B. C. D.2.如图,在第一个中,,,在上取一点,延长到,使得,得到第二个;在上取一点,延长到,使得;…,按此做法进行下去,则第5个三角形中,以点为顶点的等腰三角形的顶角的度数为()A. B. C. D.3.在平面直角坐标系中,直线y=2x﹣3与y轴的交点坐标是()A.(0,﹣3) B.(﹣3,0) C.(2,﹣3) D.(,0)4.在直角坐标系中,点与点关于轴对称,则点的坐标为()A. B. C. D.5.若分式的值为则()A. B. C.或 D.或6.若,化简的结果是()A. B. C. D.7.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行8.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.59.如图所示的多边形内角和的度数为()度A.360 B.540 C.720 D.90010.下列运算正确的是()A. B. C.α8α4=α2 D.11.下列图案中,不是轴对称图形的是()A. B. C. D.12.如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2二、填空题(每题4分,共24分)13.在中,,,则面积为_______.14.3184900精确到十万位的近似值是______________.15.如图,这是一个供滑板爱好者使用的型池的示意图,该型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为的半圆,其边缘,点在上,,一滑板爱好者从点滑到点,则他滑行的最短距离约为_________.(边缘部分的厚度忽略不计)16.多项式4x2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)17.填空:(1)已知,△ABC中,∠C+∠A=4∠B,∠C﹣∠A=40°,则∠A=度;∠B=度;∠C=度;(2)一个多边形的内角和与外角和之和为2160°,则这个多边形是边形;(3)在如图的平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小.则点P的坐标是.18.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.三、解答题(共78分)19.(8分)小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y(km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小明骑自行车的速度为km/h、妈妈骑电动车的速度为km/h;(2)解释图中点E的实际意义,并求出点E的坐标;(3)求当t为多少时,两车之间的距离为18km.20.(8分)图①是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:;方法2:;(2)观察图②请你写出下列三个代数式:之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知:,求的值;②已知:,求:的值.21.(8分)如图,在四边形ABCD中,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F,则∠1=∠2吗?请说明理由?22.(10分)计算:(1)18x3yz•(﹣y2z)3÷x2y2z(2)÷23.(10分)如图,已知经过点M(1,4)的直线y=kx+b(k≠0)与直线y=2x-3平行.(1)求k,b的值;(2)若直线y=2x-3与x轴交于点A,直线y=kx+b交x轴于点B,交y轴于点C,求△MAC的面积.24.(10分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.25.(12分)在计算的值时,小亮的解题过程如下:解:原式①②③④(1)老师认为小亮的解法有错,请你指出:小亮是从第_________步开始出错的;(2)请你给出正确的解题过程.26.已知:如图,在长方形中,,动点从点出发,以每秒的速度沿方向向点运动,动点从点出发,以每秒的速度沿向点运动,同时出发,当点停止运动时,点也随之停止,设点运动的时间为秒.请回答下列问题:(1)请用含的式子表达的面积,并直接写出的取值范围.(2)是否存在某个值,使得和全等?若存在,请求出所有满足条件的值;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】由题意根据等边三角形的性质结合点在平面直角坐标系中的位置进行分析即可得解.【详解】解:∵等边的边长为4,∴BC=4,∵点在轴上,点,在轴上,∴O为BC的中点,BO=2,∴点的坐标为.故选:B.【点睛】本题考查平面直角坐标系中点的位置的确认,结合等边三角形的性质进行分析是解题的关键.2、A【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A5的度数.【详解】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠An=,以点A4为顶点的等腰三角形的底角为∠A5,则∠A5==5°,∴以点A4为顶点的等腰三角形的顶角的度数为180°-5°-5°=170°.故选:A.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.3、A【分析】当直线与y轴相交时,x=0,故将x=0代入直线解析式中,求出交点坐标即可.【详解】把x=0代入y=2x﹣3得y=﹣3,所以直线y=2x﹣3与y轴的交点坐标是(0,﹣3).故选:A.【点睛】本题考查了直线与y轴的交点坐标问题,掌握直线与y轴的交点坐标的性质以及解法是解题的关键.4、B【解析】根据关于轴对称的点的坐标特点是横坐标相等,纵坐标相反确定点B的坐标.【详解】解:点与点关于轴对称,所以点B的坐标为,故选:B【点睛】本题考查了轴对称与坐标的关系,理解两点关于x或y轴对称的点的坐标变化规律是解题关键.5、A【分析】化解分式方程,即可求解,最后检验.【详解】,,,解得:x=2,经检验,x=2是原方程的解,故选:A.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题关键,特别注意最后需检验.6、D【分析】根据公式=|a|可知:=|a-1|-1,由于a<1,所以a-1<0,再去绝对值,化简.【详解】=|a−1|−1,
∵a<1,
∴a−1<0,
∴原式=|a−1|−1=(1−a)−1=−a,故选D.【点睛】本题考查二次根式的性质与化简、绝对值,解题的关键是掌握二次根式的性质与化简及求绝对值.7、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.8、C【解析】过A点作x轴的垂线,垂足为E,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【详解】解:过A点作x轴的垂线,垂足为E,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C.【点睛】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.9、B【分析】根据多边形的内角和定理(n﹣2)×180°计算即可.【详解】(5﹣2)×180°=180°×3=540°.故选:B.【点睛】本题考查了多边形的内角和定理.掌握多边形内角和定理是解答本题的关键.10、D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A.两项不是同类项,不能合并,错误;B.,错误;C.,错误;D.,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.11、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项符合题意;
C、是轴对称图形,故本选项不符合题意;
D、是轴对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12、A【分析】由题意可知左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即可解答.【详解】解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.【点睛】本题主要考查平方差公式的几何背景,解题的关键是运用阴影部分的面积相等得出关系式.二、填空题(每题4分,共24分)13、60【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.【详解】如图作出AB边上的高CD∵AC=BC=13,AB=10,∴△ABC是等腰三角形,∴AD=BD=5,根据勾股定理CD2=AC2-AD2,CD==12,==60,故答案为:60.【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.14、【分析】根据科学记数法和近似值的定义进行解答.【详解】【点睛】考点:近似数和有效数字.15、25【分析】滑行的距离最短,即是沿着AE的线段滑行,我们可将半圆展开为矩形来研究,展开后,A、D、E三点构成直角三角形,AE为斜边,AD和DE为直角边,写出AD和DE的长,根据题意,写出勾股定理等式,代入数据即可得出AE的距离.【详解】将半圆面展开可得:AD=米,DE=DC-CE=AB-CE=20-5=15米,在Rt△ADE中,米,即滑行的最短距离为25米,故答案为:25.【点睛】此题考查了学生对问题简单处理的能力;直接求是求不出的,所以要将半圆展开,利用已学的知识来解决这个问题.16、或或或【分析】由于多项式1x2+1加上一个单项式后能成为一个整式的完全平方,那么此单项式可能是二次项、可能是常数项,可能是一次项,还可能是1次项,分1种情况讨论即可.【详解】解:∵多项式1x2+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是1次项,①∵1x2+1-1x2=12,故此单项式是-1x2;②∵1x2+1±1x=(2x±1)2,故此单项式是±1x;③∵1x2+1-1=(2x)2,故此单项式是-1;④∵1x1+1x2+1=(2x2+1)2,故此单项式是1x1.故答案是-1x2、±1x、-1、1x1.17、(1)52,36,92;(2)12;(3)(2,0)【分析】(1)通过三角形内角和性质与已知条件联立方程可得;(2)多边形的内角和公式可得;(3)线段和差最值问题,通过“两点之间,线段最短”.【详解】解:(1)由题意得,,解得,故答案为:52,36,92;(2)设这个多边形为n边形,由题意得,,解得,n=12,故答案为:12;(3)点B(4,2)关于x轴的对称点B′(4,﹣2),设直线AB′的关系式为,把A(﹣2,4),B′(4,﹣2)代入得,,解得,k=﹣1,b=2,∴直线AB′的关系式为y=﹣x+2,当y=0时,﹣x+2=0,解得,x=2,所以点P(2,0),故答案为:(2,0).【点睛】掌握三角形内角和,多边形内角和、外角和性质及线段的最值为本题的关键.18、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,
∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,
∴∠OED=45°.
∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.
∵ED⊥x轴,
∴∠OED=90°-∠ABC=60°.
45°≠60°,此种情况不可能出现;②当∠AFE=90°时,
∵∠OED=∠FED=60°,
∴∠AEF=60°,
∵∠AFE=90°,
∴∠EAF=90°-∠AEF=30°.
∵∠BAC=90°-∠ABC=60°,
∴∠FAC=∠BAC-∠EAF=60°-30°=30°.
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,
∵∠BAC=60°,
∴∠CAF=∠EAF-∠EAC=90°-60°=30°,
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【点睛】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.三、解答题(共78分)19、(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(,);(3)或【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度==16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:,点E的纵坐标为:×16=∴点E(,);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=或t=,答:当t为或时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.20、(1)方法1:(m-n)2;方法2:(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(1)①1;②±1.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分(小正方形)的面积;(2)由面积关系容易得出结论;(1)①根据(2)所得出的关系式,容易求出结果;②先求出,再求(a)2,即可得出结果.【详解】(1)方法1:(m+n)2﹣4mn,方法2:(m﹣n)2.故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)(m﹣n)2=(m+n)2﹣4mn;(1)①(a+b)2=(a﹣b)2+4ab=52+4×(﹣6)=1;②∵,∴,∴(a)2=(a)2+4×a12+8=9,∴a±1.【点睛】本题考查了完全平方公式的几何背景,正方形和矩形面积的计算;注意仔细观察图形,表示出各图形的面积是解答本题的关键.21、∠1=∠1,理由见解析【分析】由∠A+∠ABC=180°,可以判断AD∥BC,进而得到∠1=∠DBC,由BD⊥CD,EF⊥CD,可得BD∥EF,进而得到∠DBC=∠1,于是得出结论.【详解】解:∠1=∠1,理由:∵∠A+∠ABC=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠1,∴∠1=∠1.【点睛】本题考查平行线的性质和判定,掌握平行线的性质和判定是正确得出结论的前提.22、﹣4xy5z3;【分析】(1)直接利用积的乘方运算法则化简,再利用整式的乘除运算法则计算得出答案;(2)直接利用分式的混合运算法则计算得出答案.【详解】解:(1)原式===﹣4xy5z3;(2)原式=====.【点睛】此题主要考查了整式以及分式的混合运算,解题关键是正确掌握整式以及分式的混合运算运算法则.23、(3)k=3,b=3;(3)3.2【分析】(3)先根据两直线平行得到k=3,然后把M点坐标代入y=3x+b求出b即可;(3)求得A、B、C的坐标,然后根据S△MAC=S△AMB﹣S△ABC求得即可.【详解】(3)∵直线y=kx+b(k≠0)与直线y=3x-3平行,∴k=3.∵直线y=3x+b经过点M(3,4),∴3×3+b=4,∴b=3.∴k=3,b=3(3)连接AC,AM,在直线y=3x-3中,当y=0时,3x–3=0,解得x=3.2.∴点A坐标是(3.2,0)在y=3x+3中,当y=0时,3x+3=0,解得x=-3.当x=0时,y=3,∴点B的坐标是(-3,0),点C的坐标是(0,3).∴AB=OA+OB=3.2+=3.2∴S△MAC=S△AMB-S△ABC=×3.2×4-×3.2×3=3.2【点睛】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.24、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科学探究物质的比热容课件定稿新版沪科
- 孕期痰多的健康宣教
- 鼻部肿瘤的健康宣教
- 《机床电气线路的安装与调试》课件-第4章
- 《机械制造基础》课件-05篇 第三单元 激光加工
- 爆震性耳聋的健康宣教
- 性发育异常的临床护理
- 《操作系统类型习题》课件
- JJF(陕) 075-2021 回弹仪检定装置校准规范
- JJF(陕) 026-2020 脉冲式电火花检漏仪校准规范
- 高速公路路牌广告合同范文(3篇)
- 上海市浦东惠南学区2024-2025学年九年级12月月考语文试题及答案
- 抵制心理暴力与骚扰管理规定
- 银行业专业人员职业资格初级(公司信贷)模拟试卷68
- 金融理论与政策(华南农业大学)-中国大学MOOC答案2023版
- 精读《未来简史》学习通超星期末考试答案章节答案2024年
- 2024年《论教育》全文课件
- 2024年湖南长沙市公安局监所管理支队招聘13人历年高频难、易错点500题模拟试题附带答案详解
- 节能改造合同协议
- 灌装车间员工岗位职责
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
评论
0/150
提交评论