版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市重点名校数学高三第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,则()A. B. C. D.2.展开项中的常数项为A.1 B.11 C.-19 D.513.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元4.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若,,,则下列结论正确的是()A. B. C. D.6.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.7.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.408.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7]9.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A. B. C. D.10.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7 B.15 C.31 D.6311.已知函数,则不等式的解集为()A. B. C. D.12.若集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知(为虚数单位),则复数________.14.某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多______天.15.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.16.在中,内角的对边长分别为,已知,且,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.18.(12分)如图,四棱锥中,侧面为等腰直角三角形,平面.(1)求证:平面;(2)求直线与平面所成的角的正弦值.19.(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.20.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.21.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值22.(10分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2、B【解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.3、D【解析】
根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.4、B【解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.5、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.6、A【解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.7、C【解析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.8、B【解析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.9、A【解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,·=0,因为,,由平面向量垂直的坐标表示可得,,因为,所以a2-c2=ac,两边同时除以可得,,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.10、B【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,.第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.11、D【解析】
先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.12、A【解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.【详解】解:由集合,解得,则故选:.【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
解:故答案为:【点睛】本题考查复数代数形式的乘除运算,属于基础题.14、72【解析】
根据给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【点睛】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积.【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题.16、4【解析】∵∴根据正弦定理与余弦定理可得:,即∵∴∵∴故答案为4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)由正弦定理得到.消去公因式得到所以.进而得到角A;(2)结合三角形的面积公式,和余弦定理得到,联立两式得到.解析:(I)因为,所以,由正弦定理,得.又因为,,所以.又因为,所以.(II)由,得,由余弦定理,得,即,因为,解得.因为,所以.18、(1)见解析(2)【解析】
(1)根据平面,利用线面垂直的定义可得,再由,根据线面垂直的判定定理即可证出.(2)取的中点,连接,以为坐标原点,分别为正半轴建立空间直角坐标系求出平面的一个法向量,利用空间向量法即可求解.【详解】因为平面平面,所以由为等腰直角三角形,所以又,故平面.取的中点,连接,因为,所以因为平面,所以平面所以平面如图,以为坐标原点,分别为正半轴建立空间直角坐标系则,又,所以且于是设平面的法向量为,则令得平面的一个法向量设直线与平面所成的角为,则【点睛】本题考查了线面垂直的定义、判定定理以及空间向量法求线面角,属于中档题.19、(1),,直线的倾斜角为(2)【解析】
(1)由公式消去参数得普通方程,由公式可得直角坐标方程后可得倾斜角;(2)求出直线与轴交点,用参数表示点坐标,求出,利用三角函数的性质可得最大值.【详解】(1)由,消去得的普通方程是:由,得,将代入上式,化简得直线的倾斜角为(2)在曲线上任取一点,直线与轴的交点的坐标为则当且仅当时,取最大值.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,属于基础题.求两点间距离的最值时,用参数方程设点的坐标可把问题转化为三角函数问题.20、(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.∵曲线与直线相交于不同的两点,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角,是参数),这样的参数方程中的参数有明确的几何意义,它表示之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.21、(1)的极坐标方程为.曲线的直角坐标方程为.(2)【解析】
(1)先得到的一般方程,再由极坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国地埋式喷头行业应用前景与需求趋势预测报告
- 2024-2030年中国固色剂行业竞争格局及发展风险分析报告
- 2024-2030年中国原煤行业当前经济形势及投资建议研究报告
- 2024年度医疗耗材集中采购合同细则3篇
- 2024年度土地征收补偿协议范本3篇
- 眉山职业技术学院《机械系统设计》2023-2024学年第一学期期末试卷
- 茅台学院《陶瓷工艺原理》2023-2024学年第一学期期末试卷
- 2024年汽车销售团队绩效考核合同范本3篇
- 2024年度智慧城市建设综合解决方案投标书实例3篇
- 茅台学院《电工测试技术(上)》2023-2024学年第一学期期末试卷
- 山东省高等医学院校临床教学基地水平评估指标体系与标准(修订)
- 大孔吸附树脂技术课件
- 空白货品签收单
- 建筑电气施工图(1)课件
- 质量管理体系运行奖惩考核办法课案
- 泰康人寿养老社区介绍课件
- T∕CSTM 00584-2022 建筑用晶体硅光伏屋面瓦
- 2020春国家开放大学《应用写作》形考任务1-6参考答案
- 国家开放大学实验学院生活中的法律第二单元测验答案
- CAMDS操作方法及使用技巧
- Zarit照顾者负担量表
评论
0/150
提交评论