版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市2024届数学八上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B. C.0或6 D.或62.如图,是宜宾市某周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A.最高气温是30℃B.最低气温是20℃C.出现频率最高的是28℃D.平均数是26℃3.下列图形中,不是轴对称图形的是()A. B. C. D.4.下列各式中是分式的是()A. B. C. D.5.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个 B.2个 C.3个 D.4个6.若,则的值为()A. B.1 C.-1 D.-57.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB⊥OA,且AB=1.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上()A.1和2之间B.2和1之间C.1和4之间D.4和5之间8.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.BC是△ABC的高 B.AC是△ABE的高C.DE是△ABE的高 D.AD是△ACD的高9.以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4 B.5a²,6a²,10a²C.3a,4a,a D.a-1,a-2,3a-310.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度是()A.10 B.9 C. D.二、填空题(每小题3分,共24分)11.把一个等腰直角三角板放在黑板上画好了的平面直角坐标系内,如图,已知直角顶点A的坐标为(0,1),另一个顶点B的坐标为(﹣5,5),则点C的坐标为________.12.计算:(3×10﹣5)2÷(3×10﹣1)2=_____.13.如图,一次函数的图象与轴的交点坐标为(2,0),则下列说法:①随的增大而减小;②>0;③关于的方程的解为.其中说法正确的有(把你认为说法正确的序号都填上).14.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.则过角尺顶点C的射线OC便是∠AOB的平分线。这样做的依据是_______.15.若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为____.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D'、C'的位置,并利用量角器量得∠EFB=65°,则∠AED'等于_____度.17.如图:是等边三角形,,,相交于点,于,,,则的长是______________.18.已知:如图,,点在上,则本题中全等三角形有___________对.三、解答题(共66分)19.(10分)已知△ABC等边三角形,△BDC是顶角120°的等腰三角形,以D为顶点作60°的角,它的两边分别与AB.AC所在的直线相交于点M和N,连接MN.(1)如图1,当点M、点N在边AB、AC上且DM=DN时,探究:BM、MN、NC之间的关系,并直接写出你的结论;(2)如图2,当点M、点N在边AB、AC上,但DM≠DN时,(1)中的结论还成立吗?写出你的猜想并加以证明;(3)如图3,若点M、N分别在射线AB、CA上,其他条件不变,(1)中的结论还成立吗?若成立,写出你的猜想;若不成立,请直接写出新的结论.20.(6分)计算:(1)计算:(2)计算:(3)先化简,再求值,其中.21.(6分)已知:如图一次函数y1=-x-2与y2=x-4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=-x-2与y2=x-4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1>y2时x的取值范围.22.(8分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?23.(8分)已知的三边长、、满足,试判定的形状.24.(8分)(1)计算:2a2•a4﹣(2a2)3+7a6(2)因式分解:3x3﹣12x2+12x25.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.26.(10分)已知:点D是等边△ABC边上任意一点,∠ABD=∠ACE,BD=CE.(1)说明△ABD≌△ACE的理由;(2)△ADE是什么三角形?为什么?
参考答案一、选择题(每小题3分,共30分)1、D【解析】先用含k的代数式表示出x的值,然后根据方程的解是正整数,且k为整数讨论即可得到k的值.【详解】∵,∴9-3x=kx,∴kx+3x=9,∴x=,∵方程的解是正整数,且k为整数,∴k+3=1,3,9,k=-2,0,6,当k=0时,x=3,分式方程无意义,舍去,∴k=-2,6.故选D.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.2、D【分析】根据折线统计图,写出每天的最高气温,然后逐一判断即可.【详解】解:由折线统计图可知:星期一的最高气温为20℃;星期二的最高气温为28℃;星期三的最高气温为28℃;星期四的最高气温为24℃;星期五的最高气温为26℃;星期六的最高气温为30℃;星期日的最高气温为22℃.这7天的最高气温是30℃,故A选项正确;这7天的最高气温中,最低气温是20℃,故B选项正确;这7天的最高气温中,出现频率最高的是28℃,故C选项正确;这7天最高气温的平均气温是(20+28+28+24+26+30+22)÷7=℃,故D选项错误.故选D.【点睛】此题考查的是根据折线统计图,掌握根据折线统计图解决实际问题和平均数公式是解决此题的关键.3、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4、C【分析】根据分式的定义:分母中含有字母的式子逐项判断即可.【详解】解:式子、、都是整式,不是分式,中分母中含有字母,是分式.故选:C.【点睛】本题考查的是分式的定义,属于应知应会题型,熟知分式的概念是解题关键.5、A【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先任意的三个数组合可以是2,4,6或2,4,1或2,6,1或4,6,1.根据三角形的三边关系:其中4+6>1,能组成三角形.∴只能组成1个.故选:A.【点睛】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.6、B【分析】先将变形为,即,再代入求解即可.【详解】∵,∴,即,∴.故选B.【点睛】本题考查分式的化简求值,解题的关键是将变形为.7、C【分析】根据勾股定理求出OB的长,从而得OP的长,进而即可得到点P在数轴上的位置.【详解】解:∵ABOA,OA=2,AB=1,∴根据勾股定理可得:,又∵以O为圆心,OB为半径作圆,所得圆弧交x轴为点P,∴OP=OB=,又∵1<<4,∴点P的位置位于1和4的中间,故选:C.【点睛】本题考察了勾股定理、数轴上点的表示方式、圆的概念辨析,解题的关键在于通过勾股定理求出圆的半径OB的长度,同时又要掌握圆上任意一点到圆心的距离相等.8、C【分析】根据三角形的高的定义判断即可.【详解】解:观察图象可知:BC是△ABC的高,AC是△ABE的高,AD是△ACD的高,DE是△BCD、△BDE、△CDE的高故A,B,D正确,C错误,故选:C.【点睛】本题考查三角形的角平分线,中线,高等知识,记住从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高是解决问题的关键.9、B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a=4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.10、D【分析】连接OA,OB,OC,由,设,根据得到AO为的角平分线,再根据得到,根据三线合一及勾股定理求出AD=8,再根据得到方程即可求解.【详解】解:连接OA,OB,OC,由题意知:,设,,∴AO为的角平分线,又,,∴AD为△ABC的中线,∴BD=6在,AD==8,,,.故选D【点睛】此题主要考查角平分线的判定及性质,解题的关键是熟知等腰三角形的三线合一、角平分线的判定及三角形的面积公式.二、填空题(每小题3分,共24分)11、(﹣4,﹣4)【分析】如图,过点B、C分别作BG⊥y轴、CH⊥y轴,先根据AAS证明△ABG≌△CAH,从而可得AG=CH,BG=AH,再根据A、B两点的坐标即可求出OH、CH的长,继而可得点C的坐标.【详解】解:过点B、C分别作BG⊥y轴、CH⊥y轴,垂足分别为G、H,则∠AGB=∠CHA=90°,∠ABG+∠BAG=90°,∵∠BAC=90°,∴∠CAH+∠BAG=90°,∴∠ABG=∠CAH,又∵AB=AC,∴△ABG≌△CAH(AAS).∴AG=CH,BG=AH,∵A(0,1),∴OA=1,∵B(﹣5,5),∴BG=5,OG=5,∴AH=5,AG=OG-OA=5-1=4,∴CH=4,OH=AH-OA=5-1=4,∴点C的坐标为(―4,―4).故答案为(―4,―4).【点睛】本题以平面直角坐标系为载体,考查了等腰直角三角形的性质和全等三角形的判定与性质,难度不大,属于基础题型,过点B、C分别作BG⊥y轴、CH⊥y轴构造全等三角形是解题的关键.12、.【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.【点睛】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.13、①②③【详解】考点:一次函数的性质;一次函数的图象;一次函数与一元一次方程.分析:根据一次函数的性质,结合一次函数的图形进行解答.解:①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确③因为一次函数的图象与x轴的交点为(2,0),所以当y=0时,x=2,即关于x的方程kx+b=0的解为x=2,故本项正确故答案为①②③.14、SSS证明△COM≌△CON,全等三角形对应角相等【分析】由三边相等得△COM≌△CON,再根据全等三角形对应角相等得出∠AOC=∠BOC.【详解】由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故答案为:SSS证明△COM≌△CON,全等三角形对应角相等.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.15、2【解析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=8的解,也就是说,它们有共同的解,及它们是同一方程组的解,列出方程组解答即可.【详解】根据题意,得由(1)+(2),得2x=4k即x=2k(4)由(1)-(2),得2y=2k即y=k(5)将(4)、(5)代入(3),得2k+2k=8,解得k=2.【点睛】本题考查了三元一次方程组的解,运用了加减消元法和代入消元法.通过“消元”,使其转化为二元一次方程(组)来解.16、1【分析】先求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【详解】解:∵∠EFB=65°,
∴∠EFC=180°-65°=115°,
∵四边形ABCD是长方形,
∴AD∥BC,
∴∠DEF=180°-∠EFC=180°-115°=65°,
∵沿EF折叠D和D′重合,
∴∠D′EF=∠DEF=65°,
∴∠AED′=180°-65°-65°=1°,
故答案为:1.【点睛】本题考查了折叠性质,矩形性质,平行线的性质的应用,注意:两直线平行,同旁内角互补.17、9【分析】在,易求,于是可求,进而可求,而,那么有.【详解】∵,∴,又∵,∴,∴,∴,∵是等边三角形,∴,,又∵,∴,∴,故答案为:9.【点睛】本题主要考查了等边三角形的性质,含有角直角三角形的性质,三角形全等判定及性质等相关内容,熟练掌握相关三角形性质及判定的证明是解决本题的关键.18、1【分析】由AB=AD,BC=DC,AC为公共边可以证明△ABC≌△ADC,再由全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,进而可推得△ABP≌△ADP,△CBP≌△CDP.【详解】在△ABC和△ADC中,,
∴△ABC≌△ADC;
∴∠BAC=∠DAC,∠BCA=∠DCA,
在△ABP和△ADP中,,∴△ABP≌△ADP,在△CBP和△CDP中,,
△CBP≌△CDP.综上,共有1对全等三角形.
故答案为:1.【点睛】本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共66分)19、(1)BM+CN=MN;(2)成立;证明见解析;(3)MN=CN-BM.【分析】(1)首先证明Rt△BDM≌Rt△CDN,进而得出△DMN是等边三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可得出答案;
(2)延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等的线段DE=DM,再进一步证明△MDN≌△EDN,进而等量代换得到MN=BM+NC;
(3)在CA上截取CE=BM,同理先证Rt△DCE≌Rt△DBM,再证△MDN≌△EDN(SAS),即可得证.【详解】(1)∵△ABC是正三角形,
∴∠ABC=∠ACB=60°,∵△BDC是顶角∠BDC=120°的等腰三角形,
∴∠DBC=∠DCB=30°,
∴∠DBM=∠DCN=90°,
∵在Rt△BDM和Rt△CDN中,,∴Rt△BDM≌Rt△CDN(HL),
∴BM=CN,∠BDM=∠CDN,
∵∠MDN=60°,,
∴△DMN是等边三角形,∠BDM=∠CDN=30°,
∴NC=BM=DM=MN,∴MN=MB+NC;
(2)成立.理由如下:延长AC至E,使CE=BM,连接DE,
∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,
∴∠BCD=30°,
∴∠ABD=∠ACD=90°,
即∠ECD=∠MBD=90°,
∵在Rt△DCE和Rt△DBM中,,
∴Rt△DCE≌Rt△DBM(SAS),
∴∠BDM=∠CDE,DE=DM,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∴∠MDN=∠NDE=60°,∵在△DMN和△DEN中,,∴△DMN≌△DEN(SAS),∴NE=NM,即CE+CN=NM,
∴BM+CN=NM;
(2)MN=CN-BM,理由如下:在CA上截取CE=BM,连接DM,
同理可证明:Rt△DCE≌Rt△DBM(SAS),
∴DE=DM,∠EDC=∠BDM,
∵∠MDN=∠MDB+∠BDN=60°,
∴∠BDN+∠CDE=60°,
∴∠NDE=∠NDM=60°,
∵在△MDN和△EDN中,=60°,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC-CE=NC-BM.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定和性质,含30度角的直角三角形的性质及等腰三角形的性质;此题从不同角度考查了作相等线段构造全等三角形的能力,要充分利用等边三角形及等腰三角形的性质,转换各相等线段解答.20、(1)9;(1);(3),-1【分析】(1)根据平方根和立方根的性质进行化简,然后进行运算即可;(1)根据积的乘方,幂的乘方和同底数幂的除法进行运算即可;(3)根据多项式乘以多项式的运算法则,进行化简,再计算即可.【详解】解(1)原式=6+1+1=9;(1)原式;(3)原式==当3b-a=-1时原式=-1.【点睛】本题考查了平方根,立方根,积的乘方,幂的乘方,同底数幂的除法和多项式乘以多项式,掌握运算法则是解题关键.21、(1)(1,-3);(2)9;(3)y1>y2时x的取值范围是x<1【分析】(1)解两函数的解析式组成的方程组,求出方程组的解,即可得出答案;(2)求出B、C的坐标,再根据三角形的面积公式求出即可;(3)根据函数的图象和A点的坐标得出即可.【详解】(1)解方程组得:,以A点的坐标是(1,-3);(2)函数y=-x-2中当y=0时,x=-2,函数y=x-4中,当y=0时,x=4,即OB=2,OC=4,所以BC=2+4=6,∵A(1,-3),∴△ABC的面积是=9;(3)y1>y2时x的取值范围是x<1.【点睛】本题考查了一次函数图形上点的坐标特征,一次函数的图象和性质等知识点,能求出A、B、C的坐标是解此题的关键.22、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.23、是直角三角形.【分析】原等式的左边利用分组分解法分解因式即得a、b、c满足的关系式,然后利用勾股定理的逆定理进行判断即可.【详解】解:∵,∴,∴,∵a、b、c是△ABC的三边,∴,∴,即,∴∠C=90°,是直角三角形.【点睛】本题考查了多项式的因式分解和勾股定理的逆定理,属于常考题型,熟练掌握分解因式的方法和勾股定理的逆定理是解题关键.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重症哮喘应急预案演练脚本
- 地形与人类活动的关系
- 中班语言活动:坏脾气女巫
- 《吞咽障碍》课件
- 身心活化健康评估老年康体指导初级
- 三位数乘两位数过关监控题
- 安徽省江南十校2021届高三下学期一模联考理科综合化学试题
- 区域活动分类培训
- 安全宣教培训课件
- 微课猎聘基本情况介绍财经管理人力资源管理系副教授
- 2024届高考高考英语高频单词素材
- 回收PET塑料资源化利用及产业化进展研究
- 《住院患者身体约束的护理》团体标准解读课件
- 安全事故管理考核办法范本(2篇)
- 2024-2030年中国医疗垃圾处理行业发展趋势及投资规划分析报告
- 2024年安全员C证考试题库附答案很全
- 泌尿科运用PDCA循环降低输尿管鏡激光碎石术后严重感染的发生率品管圈QCC成果汇报(赴台汇报版)
- 2024年新人教版五年级数学下册《第2单元第1课时 因数和倍数的认识(1)》教学课件
- 2024年浙江省衢州市营商环境建设办公室招聘政府雇员17人高频难、易错点500题模拟试题附带答案详解
- 中国急性缺血性卒中诊治指南(2023版)
- 劳动法律学习试题
评论
0/150
提交评论