版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南通市启东中学数学高三上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.52.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)3.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.4.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.5.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则6.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.7.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A. B. C. D.8.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米9.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.210.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()A. B.C. D.11.复数的共轭复数为()A. B. C. D.12.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则______.14.已知复数满足(为虚数单位),则复数的实部为____________.15.已知函数,若,则___________.16.已知,,且,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)18.(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.19.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.21.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.22.(10分)设函数.(1)解不等式;(2)记的最大值为,若实数、、满足,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.2、D【解析】
由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.3、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.4、B【解析】
首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.5、D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.6、B【解析】命题p:,为,又为真命题的充分不必要条件为,故7、B【解析】
初始:,,第一次循环:,,继续循环;第二次循环:,,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.8、B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.9、A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.10、A【解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点.画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为.故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.11、D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.12、B【解析】
根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得k的值,可得要求的双曲线的方程.【详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B【点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
取基向量,,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得.【详解】如图:设,又,且存在实数使得,,,,,,故答案为:.【点睛】本题考查了平面向量数量积的性质及其运算,属中档题.14、【解析】
利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.15、【解析】
根据题意,利用函数奇偶性的定义判断函数的奇偶性,利用函数奇偶性的性质求解即可.【详解】因为函数,其定义域为,所以其定义域关于原点对称,又,所以函数为奇函数,因为,所以.故答案为:【点睛】本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.16、8【解析】
由整体代入法利用基本不等式即可求得最小值.【详解】,当且仅当时等号成立.故的最小值为8,故答案为:8.【点睛】本题考查基本不等式求和的最小值,整体代入法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2个,证明见解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1°当时,在上单调递减,时,使得,与条件矛盾;2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,,要使恒成立,故.(2)原问题转化为方程实根个数问题,当时,图象与图象有且仅有2个交点,理由如下:由,即,令,因为,所以是的一根;,1°当时,,所以在上单调递减,,即在上无实根;2°当时,,则在上单调递递增,又,所以在上有唯一实根,且满足,①当时,在上单调递减,此时在上无实根;②当时,在上单调递增,,故在上有唯一实根.3°当时,由(1)知,在上单调递增,所以,故,所以在上无实根.综合1°,2°,3°,故有两个实根,即图象与图象有且仅有2个交点.【点睛】此题考查不等式恒成立问题、函数与方程的转化思想,考查导数的运用,属于较难题.18、(1);(2).【解析】
(1)利用正弦定理及可得,从而得到;(2)在中,利用余弦定可得,,而,故当时,的面积取得最大值,此时,,在中,再利用余弦定理即可解决.【详解】(1)由正弦定理及已知得,结合,得,因为,所以,由,得.(2)在中,由余弦定得,因为,所以,当且仅当时,的面积取得最大值,此时.在中,由余弦定理得.即.【点睛】本题考查正余弦定理解三角形,涉及到基本不等式求最值,考查学生的计算能力,是一道容易题.19、(1);(2)【解析】
(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.20、(1);(2).【解析】
(1)将函数的解析式表示为分段函数,然后分、、三段求解不等式,综合可得出不等式的解集;(2)求出函数的最大值,由题意得出,解此不等式即可得出实数的取值范围.【详解】.(1)当时,由,解得,此时;当时,由,解得,此时;当时,由,解得,此时.综上所述,不等式的解集;(2)当时,函数单调递增,则;当时,函数单调递减,则,即;当时,函数单调递减,则.综上所述,函数的最大值为,由题知,,解得.因此,实数的取值范围是.【点睛】本题考查含绝对值不等式的求解,同时也考查了绝对值不等式中的参数问题,考查分类讨论思想的应用,考查运算求解能力,属于中等题.21、(1)或;(2).【解析】
(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.【详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的直角坐标方程为:圆心到直线l的距离(弦心距)圆心到直线的距离为:或(2)曲线的方程可化为,其参数方程为:为曲线上任意一点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度临时用电安全设施维护保养合同文本2篇
- 2025年度产品代理合同:智能家电全系列产品代理权转让
- 2025版内蒙古自治区农牧厅农业产业链延伸与价值链提升合同4篇
- 二零二五年度临时用电安全培训服务合同范本
- 2025年度食品添加剂研发项目配料保密合同范本
- 2025年度苗木种植项目招投标合同4篇
- 二零二五年度家电品牌代言合同标准范本
- 二零二五年度某某学校校园内电梯维修保养服务合同4篇
- 《短视频编剧:选题构想+脚本制作+剧本策划+镜头拍摄》课件 第5、6章 了解剧本:创作优剧本的基础、剧本编写:创作优的故事情节
- 2025年度钢材深加工项目运输及安装合同2篇
- 《霍尔效应测量磁场》课件
- 30题纪检监察位岗位常见面试问题含HR问题考察点及参考回答
- 高考作文复习任务驱动型作文的审题立意课件73张
- 询价函模板(非常详尽)
- 《AI营销画布:数字化营销的落地与实战》
- 麻醉药品、精神药品、放射性药品、医疗用毒性药品及药品类易制毒化学品等特殊管理药品的使用与管理规章制度
- 一个28岁的漂亮小媳妇在某公司打工-被老板看上之后
- 乘务培训4有限时间水上迫降
- 2023年低年级写话教学评语方法(五篇)
- DB22T 1655-2012结直肠外科术前肠道准备技术要求
- GB/T 16474-2011变形铝及铝合金牌号表示方法
评论
0/150
提交评论