北京市大兴区八下数期末考试2024届八年级数学第一学期期末经典试题含解析_第1页
北京市大兴区八下数期末考试2024届八年级数学第一学期期末经典试题含解析_第2页
北京市大兴区八下数期末考试2024届八年级数学第一学期期末经典试题含解析_第3页
北京市大兴区八下数期末考试2024届八年级数学第一学期期末经典试题含解析_第4页
北京市大兴区八下数期末考试2024届八年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市大兴区八下数期末考试2024届八年级数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.禽流感病毒的半径大约是0.00000045米,它的直径用科学记数法表示为()A.米 B.米 C.米 D.米2.若分式的值为零,则的值为()A. B.2 C. D.3.如图,在△ABC中,CD平分∠ACB交AB于点D,于点E,于点F,且BC=4,DE=2,则△BCD的面积是()A.4 B.2 C.8 D.64.活动课上,小华将两张直角三角形纸片如图放置,已知AC=8,O是AC的中点,△ABO与△CDO的面积之比为4:3,则两纸片重叠部分即△OBC的面积为()A.4 B.6 C.2 D.25.下列各式计算正确的是().A.a2•a3=a6 B.(﹣a3)2=a6 C.(2ab)4=8a4b4 D.2a2﹣3a2=16.已知,,则的值为()A.6 B. C.0 D.17.下列实数中是无理数的是()A.π B.4 C.0.38 D.-8.如果m﹥n,那么下列结论错误的是()A.m+2﹥n+2 B.m-2﹥n-2 C.2m﹥2n D.-2m﹥-2n9.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.65°B.70°C.75°D.85°10.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,BC=,则CD为()A. B.2 C. D.3二、填空题(每小题3分,共24分)11.若分式值为0,则=______.12.当为______时,分式的值为1.13.已知,(为正整数),则______.14.如图,在中,,点、在的延长线上,是上一点,且,是上一点,且.若,则的大小为__________度.15.函数,的图象如图所示,当时,的范围是__________.16.因式分解:a3-a=______.17.若分式的值为0,则x的值为___________.18.如图,已知为中的平分线,为的外角的平分线,与交于点,若,则______.三、解答题(共66分)19.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.20.(6分)如图,在直角三角形ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.21.(6分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=____°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.22.(8分)如图,在四边形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的边AB上的高,且DE=4,求△ABC的边AB上的高.23.(8分)若一个正整数能表示为四个连续正整数的积,即:(其中为正整数),则称是“续积数”,例如:,,所以24和360都是“续积数”.(1)判断224是否为“续积数”,并说明理由;(2)证明:若是“续积数”,则是某一个多项式的平方.24.(8分)如图,直线y=-x+1和直线y=x-2相交于点P,分别与y轴交于A、B两点.(1)求点P的坐标;(2)求△ABP的面积;(3)M、N分别是直线y=-x+1和y=x-2上的两个动点,且MN∥y轴,若MN=5,直接写出M、N两点的坐标.25.(10分)如图,已知□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.26.(10分)(1)运用乘法公式计算:.(2)解分式方程:.

参考答案一、选择题(每小题3分,共30分)1、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、C【分析】分式值为零的条件是分子等于零且分母不等于零.据此列出关于的方程、不等式即可得出答案.【详解】∵∴∴解得故选:C【点睛】本题考查了分式值为零需满足的条件,分子等于零且分母不等于零,二者缺一不可.3、A【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,

∴DF=DE=2,∴;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.4、D【分析】先根据直角三角形的性质可求出OB、OC、OA的长、以及的面积等于的面积,再根据题中两三角形的面积比可得OD的长,然后由勾股定理可得CD的长,最后根据三角形的面积公式可得出答案.【详解】在中,,O是AC的中点的面积等于的面积与的面积之比为与的面积之比为又,即在中,故选:D.【点睛】本题考查了直角三角形的性质(斜边上的中线等于斜边的一半)、勾股定理等知识点,根据已知的面积之比求出OD的长是解题关键.5、B【详解】解:A选项是同底数幂相乘,底数不变,指数相加,a2•a3=a5,故错误;B选项是利用积的乘方和幂的乘方法则把-1和a的三次方分别平方,(﹣a3)2=a6,正确;C选项利用积的乘方法则,把积里每一个因式分别乘方,(2ab)4=16a4b4,故错误;D选项把同类项进行合并时系数合并,字母及字母指数不变,2a2﹣3a2=﹣a2,错误;故选B.【点睛】本题考查同底数幂的乘法;幂的乘方与积的乘方;合并同类项.6、D【分析】根据整式乘法法则去括号,再把已知式子的值代入即可.【详解】∵,,∴原式.故选:D.7、A【解析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【详解】解:A、π是无限不循环小数,是无理数;B、4=2是整数,为有理数;C、0.38为分数,属于有理数;D.-227故选:A.【点睛】本题考查的是无理数,熟知初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解答此题的关键.8、D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A.两边都加2,不等号的方向不变,故A正确;B.两边都减2,不等号的方向不变,故B正确;C.两边都乘以2,不等号的方向不变,故C正确;D.两边都乘以-2,不等号的方向改变,故D错误;故选D.【点睛】此题考查不等式的性质,解题关键在于掌握运算法则9、A【解析】试题解析:∵EF⊥BC,∠DEF=15°,∴∠ADB=90°-15°=75°.∵∠C=35°,∴∠CAD=75°-35°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°.故选A.10、B【解析】根据勾股定理就可求得AB的长,再根据△ABC的面积=•AC•BC=•AB•CD,即可求得.【详解】根据题意得:AB=.∵△ABC的面积=•AC•BC=•AB•CD,∴CD=.故选B.【点睛】本题主要考查了勾股定理,根据三角形的面积是解决本题的关键.二、填空题(每小题3分,共24分)11、1【分析】分式的值为零,分子等于零且分母不等于零.【详解】当=2时,=2,x≠2解得x=1.故答案是:1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.12、2.【分析】先根据分式的值为零的条件确定分子为零分母不为零,再求解方程和不等式即得.【详解】解:∵分式的值为1∴∴.故答案为:2.【点睛】本题考查分式的定义,正确抓住分式值为零的条件是解题关键.13、1【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则求出即可.【详解】∵,,∴.故答案为:1.【点睛】此题主要考查了幂的乘方以及同底数幂的乘法运算,正确掌握运算法则是解题的关键.14、10【解析】根据三角形外角的性质,结合已知,得∠E=∠CDG,同理,,∠CDG=∠ACB,,得出∠ACB=∠B,利用三角形内角和180°,计算即得.【详解】∵DE=DF,CG=CD,∴∠E=∠EFD=∠CDG,∠CDG=∠CGD=∠ACB,又∵AB=AC,∴∠ACB=∠B=(180°-∠A)=(180°-100°)=40°,∴∠E=,故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.15、【分析】当时,的图象在的图象的下方可知.【详解】解:当时,,,两直线的交点为(2,2),当时,,,两直线的交点为(-1,1),由图象可知,当时,x的取值范围为:,故答案为:.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是准确看图,通过图象得出x的取值范围.16、a(a-1)(a+1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).17、-3【分析】由分式的值为0,则分子为0,分母不为0,可得答案.【详解】因为:分式的值为0所以:解得:故答案为【点睛】本题考查的是分式的值为0的条件,即分子为0,分母不为0,熟知条件是关键.18、56°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACE和∠DCE,再根据角平分线的定义可得∠ABC=2∠DBC,∠ACE=2∠DCE,然后整理即可得解.【详解】由三角形的外角性质得,∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∵BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∴∠A+∠ABC=2(∠D+∠DBC),整理得,∠A=2∠D,∵∠D=28°,∴∠A=2×28°=56°故答案为:56°.【点睛】本题考查了角平分线与三角形的外角性质,熟练运用外角性质将角度转化是解题的关键.三、解答题(共66分)19、(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.20、证明见解析【分析】连结BF,根据角平分线的性质定理可到FM=FN,再求得∠NEF=75°=∠MDF,即可证明△EFM≌△DFN,根据全等三角形的性质可得FE=FD.【详解】解:连结BF.∵F是∠BAC与∠ACB的平分线的交点,∴BF是∠ABC的平分线.又∵FM⊥AB,FN⊥BC,∴FM=FN,∠EMF=∠DNF=90°.∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠DAC=∠BAC=15°,∴∠CDA=75°.易得∠ACE=45°,∴∠CEB=∠BAC+∠ACF=75°,即∠NDF=∠MEF=75°.在△DNF和△EMF中,∵∴△DNF≌△EMF(AAS).∴FE=FD.【点睛】本题主要考查了角平分线的性质和全等三角形的判定和性质,利用所给的条件证得三角形全等是解题的关键.21、(1)140°;(2)∠1+∠2=90°+∠α;(3)∠1=90°+∠2+α.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;【详解】(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α,考点:1.三角形内角和定理;2.三角形的外角性质.22、△ABC的边AB上的高为4.1.【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股定理的逆定理求出△ABC是直角三角形,再求出面积,进一步得到△ABC的边AB上的高即可.【详解】∵DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,由勾股定理,得AE=.同理:在Rt△BDE中,由勾股定理得:BE=1,∴AB=2+1=10,在△ABC中,由AB=10,AC=6,BC=1,得:AB2=AC2+BC2,∴△ABC是直角三角形,设△ABC的AB边上的高为h,则×AB×h=AC×BC,即:10h=6×1,∴h=4.1,∴△ABC的边AB上的高为4.1.【点睛】本题考查了三角形的高的问题,掌握勾股定理以及勾股定理逆定理是解题的关键.23、(1)不是,理由见解析;(2)见解析.【分析】(1)根据“续积数”的定义,只要将224分解因数,看能否等于4个连续的正整数之积即可;(2)由于是“续积数”,可设,然后只要将M+1分解因式为一个多项式的完全平方即可,注意把看作一个整体.【详解】解:(1)∵,不是4个连续正整数之积,∴224不是“续积数”;(2)证明:∵是“续积数”,∴可设,则.即M+1是多项式的平方.【点睛】本题是新定义型试题,主要考查了对“续积数”的理解和多项式的因式分解,正确理解题意、熟练掌握分解因式的方法是解题的关键.24、(1)P点坐标为;(2);(3)M(4,-3),N(4,2)或M(-1,2),N(-1,-3)【分析】(1)通过两条直线方程联立成一个方程组,解方程组即可得到点P的坐标;(2)利用三角形面积公式解题即可;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论